cdef.rs 15.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
// Copyright (c) 2017-2018, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.

#![allow(safe_extern_statics)]

use std::cmp;
use context::*;
use plane::*;
use FrameInvariants;
use Frame;

const CDEF_VERY_LARGE: u16 = 30000;
const CDEF_SEC_STRENGTHS: u8 = 4;

fn msb(x: i32) -> i32 {
    31 ^ (x.leading_zeros() as i32)
}

// Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
// The output is then 840 times larger, but we don't care for finding
// the max. */
const CDEF_DIV_TABLE: [i32; 9] = [ 0, 840, 420, 280, 210, 168, 140, 120, 105 ];

// Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
// The search minimizes the weighted variance along all the lines in a
// particular direction, i.e. the squared error between the input and a
// "predicted" block where each pixel is replaced by the average along a line
// in a particular direction. Since each direction have the same sum(x^2) term,
// that term is never computed. See Section 2, step 2, of:
// http://jmvalin.ca/notes/intra_paint.pdf
fn cdef_find_dir(img: &[u16], stride: usize, var: &mut i32, coeff_shift: i32) -> i32 {
    let mut cost: [i32; 8] = [0; 8];
    let mut partial: [[i32; 15]; 8] = [[0; 15]; 8];
    let mut best_cost: i32 = 0;
    let mut best_dir = 0;
    for i in 0..8 {
        for j in 0..8 {
            // We subtract 128 here to reduce the maximum range of the squared
            // partial sums. 
            let x = (img[i * stride + j] as i32 >> coeff_shift) - 128;
            partial[0][i + j] += x;
            partial[1][i + j / 2] += x;
            partial[2][i] += x;
            partial[3][3 + i - j / 2] += x;
            partial[4][7 + i - j] += x;
            partial[5][3 - i / 2 + j] += x;
            partial[6][j] += x;
            partial[7][i / 2 + j] += x;
        }
    }
    for i in 0..8 {
        cost[2] += partial[2][i] * partial[2][i];
        cost[6] += partial[6][i] * partial[6][i];
    }
    cost[2] *= CDEF_DIV_TABLE[8];
    cost[6] *= CDEF_DIV_TABLE[8];
    for i in 0..7 {
        cost[0] += (partial[0][i]*partial[0][i] +
                    partial[0][14-i]*partial[0][14-i]) * CDEF_DIV_TABLE[i + 1];
        cost[4] += (partial[4][i]*partial[4][i] +
                    partial[4][14-i]*partial[4][14-i]) * CDEF_DIV_TABLE[i + 1];
    }
    cost[0] += partial[0][7] * partial[0][7] * CDEF_DIV_TABLE[8];
    cost[4] += partial[4][7] * partial[4][7] * CDEF_DIV_TABLE[8];
    let mut i = 1;
    while i<8 {
        for j in 0..5 {
            cost[i] += partial[i][3 + j] * partial[i][3 + j];
        }
        cost[i] *= CDEF_DIV_TABLE[8];
        for j in 0..3 {
            cost[i] += (partial[i][j]*partial[i][j] +
                        partial[i][10-j]*partial[i][10-j]) * CDEF_DIV_TABLE[2 * j + 2];
        }
        i+=2;
    }
    for i in 0..8 {
        if cost[i] > best_cost {
            best_cost = cost[i];
            best_dir = i;
        }
    }
    // Difference between the optimal variance and the variance along the
    // orthogonal direction. Again, the sum(x^2) terms cancel out. 
    // We'd normally divide by 840, but dividing by 1024 is close enough
    // for what we're going to do with this. */
    *var = (best_cost - cost[(best_dir + 4) & 7]) >> 10;
        
    best_dir as i32
}

fn constrain(diff: i32, threshold: i32, damping: i32) -> i32 {
    if threshold != 0 {
        let shift = cmp::max(0, damping - msb(threshold));
        let magnitude = cmp::min(diff.abs(), cmp::max(0, threshold - (diff.abs() >> shift)));
        if diff < 0 {
            -1 * magnitude
        } else {
            magnitude
        }   
    } else {
        0
    }
}

// Unlike the AOM code, our block addressing points to the UL corner
// of the 2-pixel padding around the block, not the block itself.
// The destination is unpadded.
fn cdef_filter_block(dst: &mut [u16], dstride: i32, input: &[u16], istride: i32,
                     pri_strength: i32, sec_strength: i32, dir: usize, pri_damping: i32,
                     sec_damping: i32, xsize: i32, ysize: i32, coeff_shift: i32) {

    let cdef_pri_taps = [[4, 2], [3, 3]];
    let cdef_sec_taps = [[2, 1], [2, 1]];
    let pri_taps = cdef_pri_taps[((pri_strength >> coeff_shift) & 1) as usize];
    let sec_taps = cdef_sec_taps[((pri_strength >> coeff_shift) & 1) as usize];
    let cdef_directions = [[-1 * istride + 1, -2 * istride + 2 ],
                           [ 0 * istride + 1, -1 * istride + 2 ],
                           [ 0 * istride + 1,  0 * istride + 2 ],
                           [ 0 * istride + 1,  1 * istride + 2 ],
                           [ 1 * istride + 1,  2 * istride + 2 ],
                           [ 1 * istride + 0,  2 * istride + 1 ],
                           [ 1 * istride + 0,  2 * istride + 0 ],
                           [ 1 * istride + 0,  2 * istride - 1 ]];
    for i in 0..ysize {
        for j in 0..xsize {
            let x = input[((i+2) * istride + j+2) as usize];
            let mut sum = 0 as i32;
            let mut max = x;
            let mut min = x;
            for k in 0..2usize {
                let p0 = input[((i+2)*istride + j+2 + cdef_directions[dir][k]) as usize];
                let p1 = input[((i+2)*istride + j+2 - cdef_directions[dir][k]) as usize];
                sum += pri_taps[k] * constrain(p0 as i32 - x as i32, pri_strength, pri_damping);
                sum += pri_taps[k] * constrain(p1 as i32 - x as i32, pri_strength, pri_damping);
                if p0 != CDEF_VERY_LARGE {
                    max = cmp::max(p0, max);
                }
                if p1 != CDEF_VERY_LARGE {
                    max = cmp::max(p1, max);
                }
                min = cmp::min(p0, min);
                min = cmp::min(p1, min);
                let s0 = input[((i+2) * istride + j+2 + cdef_directions[(dir + 2) & 7][k]) as usize];
                let s1 = input[((i+2) * istride + j+2 - cdef_directions[(dir + 2) & 7][k]) as usize];
                let s2 = input[((i+2) * istride + j+2 + cdef_directions[(dir + 6) & 7][k]) as usize];
                let s3 = input[((i+2) * istride + j+2 - cdef_directions[(dir + 6) & 7][k]) as usize];
                if s0 != CDEF_VERY_LARGE {
                    max = cmp::max(s0, max);
                }
                if s1 != CDEF_VERY_LARGE {
                    max = cmp::max(s1, max);
                }
                if s2 != CDEF_VERY_LARGE {
                    max = cmp::max(s2, max);
                }
                if s3 != CDEF_VERY_LARGE {
                    max = cmp::max(s3, max);
                }
                min = cmp::min(s0, min);
                min = cmp::min(s1, min);
                min = cmp::min(s2, min);
                min = cmp::min(s3, min);
                sum += sec_taps[k] * constrain(s0 as i32 - x as i32, sec_strength, sec_damping);
                sum += sec_taps[k] * constrain(s1 as i32 - x as i32, sec_strength, sec_damping);
                sum += sec_taps[k] * constrain(s2 as i32 - x as i32, sec_strength, sec_damping);
                sum += sec_taps[k] * constrain(s3 as i32 - x as i32, sec_strength, sec_damping);
            }
            dst[(i * dstride + j) as usize] = clamp(x as i32 + ((8 + sum - (sum < 0) as i32) >> 4),
                                                    min as i32, max as i32) as u16;
        }
    }
}

// We use the variance of an 8x8 block to adjust the effective filter strength.
fn adjust_strength(strength: i32, var: i32) -> i32 {
    let i = if (var >> 6) != 0 {cmp::min(msb(var >> 6), 12)} else {0};
    if var!=0 {strength * (4 + i) + 8 >> 4} else {0}
}

// Input to this process is the array CurrFrame of reconstructed samples.
// Output from this process is the array CdefFrame containing deringed samples.
// The purpose of CDEF is to perform deringing based on the detected direction of blocks.
// CDEF parameters are stored for each 64 by 64 block of pixels.
// The CDEF filter is applied on each 8 by 8 block of pixels.
// Reference: http://av1-spec.argondesign.com/av1-spec/av1-spec.html#cdef-process
pub fn cdef_frame(fi: &FrameInvariants, rec: &mut Frame, bc: &mut BlockContext) {
    let bit_depth = 8;
    let coeff_shift = bit_depth - 8;
    let cdef_pri_y_strength = (fi.cdef_y_strength / CDEF_SEC_STRENGTHS) as i32;
    let mut cdef_sec_y_strength = (fi.cdef_y_strength % CDEF_SEC_STRENGTHS) as i32;
    let cdef_pri_uv_strength = (fi.cdef_uv_strength / CDEF_SEC_STRENGTHS) as i32;
    let mut cdef_sec_uv_strength = (fi.cdef_uv_strength % CDEF_SEC_STRENGTHS) as i32;
    if cdef_sec_y_strength == 3 {
        cdef_sec_y_strength += 1;
    }
    if cdef_sec_uv_strength == 3 {
        cdef_sec_uv_strength += 1;
    }
    let cdef_pri_damping = fi.cdef_damping as i32;
    let cdef_sec_damping = cdef_pri_damping as i32;

    // Each filter block is 64x64, except right and/or bottom for non-multiple-of-64 sizes.
    // FIXME: 128x128 SB support will break this, we need FilterBlockOffset etc.
    let fb_height = (fi.padded_h + 63) / 64;
    let fb_width = (fi.padded_w + 63) / 64;

    // Construct a padded copy of the reconstructed frame.
    let mut padded_px: [[usize; 2]; 3] = [[0; 2]; 3];
    for p in 0..3 {
        padded_px[p][0] =  (fb_width*64 >> rec.planes[p].cfg.xdec) + 4;
        padded_px[p][1] =  (fb_height*64 >> rec.planes[p].cfg.ydec) + 4;
    }
    let mut cdef_frame = Frame {
        planes: [
            Plane::new(padded_px[0][0], padded_px[0][1], rec.planes[0].cfg.xdec, rec.planes[0].cfg.ydec),
            Plane::new(padded_px[1][0], padded_px[1][1], rec.planes[1].cfg.xdec, rec.planes[1].cfg.ydec),
            Plane::new(padded_px[2][0], padded_px[2][1], rec.planes[2].cfg.xdec, rec.planes[2].cfg.ydec)
        ]
    };
    for p in 0..3 {
        let rec_w = fi.padded_w >> rec.planes[p].cfg.xdec;
        let rec_h = fi.padded_h >> rec.planes[p].cfg.ydec;
        for row in 0..padded_px[p][1] {
            // pad first two elements of current row
            {
                let mut cdef_slice = cdef_frame.planes[p].mut_slice(&PlaneOffset { x: 0, y: row});
                let mut cdef_row = &mut cdef_slice.as_mut_slice()[..2];
                cdef_row[0] = CDEF_VERY_LARGE;
                cdef_row[1] = CDEF_VERY_LARGE;
            }
            // pad out end of current row
            {
                let mut cdef_slice = cdef_frame.planes[p].mut_slice(&PlaneOffset { x: rec_w+2, y: row });
                let mut cdef_row = &mut cdef_slice.as_mut_slice()[..padded_px[p][0]-rec_w-2];
                for x in cdef_row {
                    *x = CDEF_VERY_LARGE;
                }
            }
            // copy current row from rec if we're in data, or pad if we're in first two rows/last N rows
            {
                let mut cdef_slice = cdef_frame.planes[p].mut_slice(&PlaneOffset { x: 2, y: row });
                let mut cdef_row = &mut cdef_slice.as_mut_slice()[..rec_w];
                if row < 2 || row >= rec_h+2 {
                    for x in cdef_row {
                        *x = CDEF_VERY_LARGE;
                    }
                } else {
                    let rec_stride = rec.planes[p].cfg.stride;
                    cdef_row.copy_from_slice(&rec.planes[p].data[(row-2)*rec_stride..(row-1)*rec_stride]);
                }
            }
        }
    }

    // Perform actual CDEF, using the padded copy as source, and the input rec vector as destination.
    for fby in 0..fb_height {
        for fbx in 0..fb_width {
            let sbo = SuperBlockOffset { x: fbx, y: fby };
            // Each direction block is 8x8 in y, potentially smaller if subsampled in chroma
            for by in 0..8 {
                for bx in 0..8 {
                    let block_offset = sbo.block_offset(bx, by);
                    if block_offset.x < bc.cols && block_offset.y < bc.rows {
                        let mut dir = 0;
                        let mut var: i32 = 0;
                        let skip = bc.at(&block_offset).skip;
                        for p in 0..3 {
                            let mut rec_plane = &mut rec.planes[p];
                            let mut cdef_plane = &mut cdef_frame.planes[p];
                            let xdec = cdef_plane.cfg.xdec;
                            let ydec = cdef_plane.cfg.ydec;
                            let rec_stride = rec_plane.cfg.stride;
                            let rec_po = sbo.plane_offset(&rec_plane.cfg);
                            let mut rec_slice = &mut rec_plane.mut_slice(&rec_po);
                            let cdef_stride = cdef_plane.cfg.stride;
                            let cdef_po = sbo.plane_offset(&cdef_plane.cfg);
                            let cdef_slice = &cdef_plane.mut_slice(&cdef_po);
                            
                            let mut local_pri_strength = 0;
                            let mut local_sec_strength = 0;
                            let mut local_pri_damping:i32 = cdef_pri_damping + coeff_shift;
                            let mut local_sec_damping:i32 = cdef_sec_damping + coeff_shift;
                            let mut local_dir:usize = 0;
                            
                            if !skip {
                                if p==0 {
                                    dir = cdef_find_dir(cdef_slice.offset((8*bx>>xdec)+2,(8*by>>ydec)+2), 
                                                        cdef_stride, &mut var, coeff_shift);
                                    local_pri_strength = adjust_strength(cdef_pri_y_strength << coeff_shift, var);
                                    local_sec_strength = cdef_sec_y_strength << coeff_shift;
                                    local_dir = if cdef_pri_y_strength != 0 {dir as usize} else {0};
                            } else {
                                    local_pri_strength = cdef_pri_uv_strength << coeff_shift;
                                    local_sec_strength = cdef_sec_uv_strength << coeff_shift;
                                    local_pri_damping -= 1;
                                    local_sec_damping -= 1;
                                    local_dir = if cdef_pri_uv_strength != 0 {dir as usize} else {0};
                                }
                            }
                            let mut xsize = (fi.padded_w as i32 - 8*bx as i32 >> xdec as i32) - rec_po.x as i32;
                            let mut ysize = (fi.padded_h as i32 - 8*by as i32 >> ydec as i32) - rec_po.y as i32;
                            if xsize > (8>>xdec) {
                                xsize = 8 >> xdec;
                            }
                            if ysize > (8>>ydec) {
                                ysize = 8 >> ydec;
                            }
                            if xsize > 0 && ysize > 0 {
                                cdef_filter_block(rec_slice.offset_as_mutable(8*bx>>xdec,8*by>>ydec), rec_stride as i32,
                                                  cdef_slice.offset(8*bx>>xdec,8*by>>ydec), cdef_stride as i32, 
                                                  local_pri_strength, local_sec_strength, local_dir,
                                                  local_pri_damping, local_sec_damping,
                                                  xsize, ysize,
                                                  coeff_shift as i32);
                            }
                        }
                    }
                }
            }
        }
    }
}