cdef.rs 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
// Copyright (c) 2017-2018, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.

#![allow(safe_extern_statics)]

use std::cmp;
use context::*;
use plane::*;
15
use util::clamp;
16
use util::msb;
17
18
19
use FrameInvariants;
use Frame;

20
21
22
23
24
pub struct CdefDirections {
    dir: [[u8; 8]; 8],
    var: [[i32; 8]; 8]
}

Monty's avatar
Monty committed
25
pub const CDEF_VERY_LARGE: u16 = 30000;
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
const CDEF_SEC_STRENGTHS: u8 = 4;

// Instead of dividing by n between 2 and 8, we multiply by 3*5*7*8/n.
// The output is then 840 times larger, but we don't care for finding
// the max. */
const CDEF_DIV_TABLE: [i32; 9] = [ 0, 840, 420, 280, 210, 168, 140, 120, 105 ];

// Detect direction. 0 means 45-degree up-right, 2 is horizontal, and so on.
// The search minimizes the weighted variance along all the lines in a
// particular direction, i.e. the squared error between the input and a
// "predicted" block where each pixel is replaced by the average along a line
// in a particular direction. Since each direction have the same sum(x^2) term,
// that term is never computed. See Section 2, step 2, of:
// http://jmvalin.ca/notes/intra_paint.pdf
fn cdef_find_dir(img: &[u16], stride: usize, var: &mut i32, coeff_shift: i32) -> i32 {
    let mut cost: [i32; 8] = [0; 8];
    let mut partial: [[i32; 15]; 8] = [[0; 15]; 8];
    let mut best_cost: i32 = 0;
    let mut best_dir = 0;
    for i in 0..8 {
        for j in 0..8 {
            // We subtract 128 here to reduce the maximum range of the squared
            // partial sums. 
49
            debug_assert!((img[i * stride + j] >> coeff_shift) <= 255);
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            let x = (img[i * stride + j] as i32 >> coeff_shift) - 128;
            partial[0][i + j] += x;
            partial[1][i + j / 2] += x;
            partial[2][i] += x;
            partial[3][3 + i - j / 2] += x;
            partial[4][7 + i - j] += x;
            partial[5][3 - i / 2 + j] += x;
            partial[6][j] += x;
            partial[7][i / 2 + j] += x;
        }
    }
    for i in 0..8 {
        cost[2] += partial[2][i] * partial[2][i];
        cost[6] += partial[6][i] * partial[6][i];
    }
    cost[2] *= CDEF_DIV_TABLE[8];
    cost[6] *= CDEF_DIV_TABLE[8];
    for i in 0..7 {
        cost[0] += (partial[0][i]*partial[0][i] +
                    partial[0][14-i]*partial[0][14-i]) * CDEF_DIV_TABLE[i + 1];
        cost[4] += (partial[4][i]*partial[4][i] +
                    partial[4][14-i]*partial[4][14-i]) * CDEF_DIV_TABLE[i + 1];
    }
    cost[0] += partial[0][7] * partial[0][7] * CDEF_DIV_TABLE[8];
    cost[4] += partial[4][7] * partial[4][7] * CDEF_DIV_TABLE[8];
    let mut i = 1;
    while i<8 {
        for j in 0..5 {
            cost[i] += partial[i][3 + j] * partial[i][3 + j];
        }
        cost[i] *= CDEF_DIV_TABLE[8];
        for j in 0..3 {
            cost[i] += (partial[i][j]*partial[i][j] +
                        partial[i][10-j]*partial[i][10-j]) * CDEF_DIV_TABLE[2 * j + 2];
        }
        i+=2;
    }
    for i in 0..8 {
        if cost[i] > best_cost {
            best_cost = cost[i];
            best_dir = i;
        }
    }
    // Difference between the optimal variance and the variance along the
    // orthogonal direction. Again, the sum(x^2) terms cancel out. 
    // We'd normally divide by 840, but dividing by 1024 is close enough
    // for what we're going to do with this. */
    *var = (best_cost - cost[(best_dir + 4) & 7]) >> 10;
        
    best_dir as i32
}

fn constrain(diff: i32, threshold: i32, damping: i32) -> i32 {
    if threshold != 0 {
        let shift = cmp::max(0, damping - msb(threshold));
        let magnitude = cmp::min(diff.abs(), cmp::max(0, threshold - (diff.abs() >> shift)));
        if diff < 0 {
            -1 * magnitude
        } else {
            magnitude
        }   
    } else {
        0
    }
}

// Unlike the AOM code, our block addressing points to the UL corner
// of the 2-pixel padding around the block, not the block itself.
// The destination is unpadded.
fn cdef_filter_block(dst: &mut [u16], dstride: i32, input: &[u16], istride: i32,
                     pri_strength: i32, sec_strength: i32, dir: usize, pri_damping: i32,
                     sec_damping: i32, xsize: i32, ysize: i32, coeff_shift: i32) {

    let cdef_pri_taps = [[4, 2], [3, 3]];
    let cdef_sec_taps = [[2, 1], [2, 1]];
    let pri_taps = cdef_pri_taps[((pri_strength >> coeff_shift) & 1) as usize];
    let sec_taps = cdef_sec_taps[((pri_strength >> coeff_shift) & 1) as usize];
    let cdef_directions = [[-1 * istride + 1, -2 * istride + 2 ],
                           [ 0 * istride + 1, -1 * istride + 2 ],
                           [ 0 * istride + 1,  0 * istride + 2 ],
                           [ 0 * istride + 1,  1 * istride + 2 ],
                           [ 1 * istride + 1,  2 * istride + 2 ],
                           [ 1 * istride + 0,  2 * istride + 1 ],
                           [ 1 * istride + 0,  2 * istride + 0 ],
                           [ 1 * istride + 0,  2 * istride - 1 ]];
    for i in 0..ysize {
        for j in 0..xsize {
            let x = input[((i+2) * istride + j+2) as usize];
            let mut sum = 0 as i32;
            let mut max = x;
            let mut min = x;
            for k in 0..2usize {
                let p0 = input[((i+2)*istride + j+2 + cdef_directions[dir][k]) as usize];
                let p1 = input[((i+2)*istride + j+2 - cdef_directions[dir][k]) as usize];
                sum += pri_taps[k] * constrain(p0 as i32 - x as i32, pri_strength, pri_damping);
                sum += pri_taps[k] * constrain(p1 as i32 - x as i32, pri_strength, pri_damping);
                if p0 != CDEF_VERY_LARGE {
                    max = cmp::max(p0, max);
                }
                if p1 != CDEF_VERY_LARGE {
                    max = cmp::max(p1, max);
                }
                min = cmp::min(p0, min);
                min = cmp::min(p1, min);
                let s0 = input[((i+2) * istride + j+2 + cdef_directions[(dir + 2) & 7][k]) as usize];
                let s1 = input[((i+2) * istride + j+2 - cdef_directions[(dir + 2) & 7][k]) as usize];
                let s2 = input[((i+2) * istride + j+2 + cdef_directions[(dir + 6) & 7][k]) as usize];
                let s3 = input[((i+2) * istride + j+2 - cdef_directions[(dir + 6) & 7][k]) as usize];
                if s0 != CDEF_VERY_LARGE {
                    max = cmp::max(s0, max);
                }
                if s1 != CDEF_VERY_LARGE {
                    max = cmp::max(s1, max);
                }
                if s2 != CDEF_VERY_LARGE {
                    max = cmp::max(s2, max);
                }
                if s3 != CDEF_VERY_LARGE {
                    max = cmp::max(s3, max);
                }
                min = cmp::min(s0, min);
                min = cmp::min(s1, min);
                min = cmp::min(s2, min);
                min = cmp::min(s3, min);
                sum += sec_taps[k] * constrain(s0 as i32 - x as i32, sec_strength, sec_damping);
                sum += sec_taps[k] * constrain(s1 as i32 - x as i32, sec_strength, sec_damping);
                sum += sec_taps[k] * constrain(s2 as i32 - x as i32, sec_strength, sec_damping);
                sum += sec_taps[k] * constrain(s3 as i32 - x as i32, sec_strength, sec_damping);
            }
            dst[(i * dstride + j) as usize] = clamp(x as i32 + ((8 + sum - (sum < 0) as i32) >> 4),
180
                                                                min as i32, max as i32) as u16;
181
182
183
184
185
186
187
188
189
190
        }
    }
}

// We use the variance of an 8x8 block to adjust the effective filter strength.
fn adjust_strength(strength: i32, var: i32) -> i32 {
    let i = if (var >> 6) != 0 {cmp::min(msb(var >> 6), 12)} else {0};
    if var!=0 {strength * (4 + i) + 8 >> 4} else {0}
}

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// For convenience of use alongside cdef_filter_superblock, we assume
// in_frame is padded.  Blocks are not scanned outside the block
// boundaries (padding is untouched here).

pub fn cdef_analyze_superblock(in_frame: &mut Frame,
                               bc_global: &mut BlockContext,
                               sbo: &SuperBlockOffset,
                               sbo_global: &SuperBlockOffset,
                               bit_depth: usize) -> CdefDirections {
    let coeff_shift = bit_depth as i32 - 8;
    let mut dir: CdefDirections = CdefDirections {dir: [[0; 8]; 8], var: [[0; 8]; 8]};
    // Each direction block is 8x8 in y, and direction computation only looks at y
    for by in 0..8 {
        for bx in 0..8 {
            // The bc and global SBO are only to determine frame
            // boundaries and skips in the event we're passing in a
            // single-SB copy 'frame' that represents some superblock
            // in the main frame.
            let global_block_offset = sbo_global.block_offset(bx<<1, by<<1);
            if global_block_offset.x < bc_global.cols && global_block_offset.y < bc_global.rows {
211
212
213
214
215
                let skip = bc_global.at(&global_block_offset).skip
                         & bc_global.at(&sbo_global.block_offset(2*bx+1, 2*by)).skip
                         & bc_global.at(&sbo_global.block_offset(2*bx, 2*by+1)).skip
                         & bc_global.at(&sbo_global.block_offset(2*bx+1, 2*by+1)).skip;

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                if !skip {
                    let mut var: i32 = 0;
                    let mut in_plane = &mut in_frame.planes[0];
                    let in_po = sbo.plane_offset(&in_plane.cfg);
                    let in_stride = in_plane.cfg.stride;
                    let in_slice = &in_plane.mut_slice(&in_po);
                    dir.dir[bx][by] = cdef_find_dir(in_slice.offset(8*bx+2,8*by+2),
                                                    in_stride, &mut var, coeff_shift) as u8;
                    dir.var[bx][by] = var;
                }
            }
        }
    }
    dir
}

232
233
234
235
236
237
// We assume in is padded, and the area we'll write out is at least as
// large as the unpadded area of in
// cdef_index is taken from the block context
pub fn cdef_filter_superblock(fi: &FrameInvariants,
                              in_frame: &mut Frame,
                              out_frame: &mut Frame,
Monty's avatar
Monty committed
238
                              bc_global: &mut BlockContext,
239
                              sbo: &SuperBlockOffset,
Monty's avatar
Monty committed
240
                              sbo_global: &SuperBlockOffset,
241
                              bit_depth: usize,
242
243
                              cdef_index: u8,
                              cdef_dirs: &CdefDirections) {
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    let coeff_shift = bit_depth as i32 - 8;
    let cdef_damping = fi.cdef_damping as i32;
    let cdef_y_strength = fi.cdef_y_strengths[cdef_index as usize];
    let cdef_uv_strength = fi.cdef_uv_strengths[cdef_index as usize];
    let cdef_pri_y_strength = (cdef_y_strength / CDEF_SEC_STRENGTHS) as i32;
    let mut cdef_sec_y_strength = (cdef_y_strength % CDEF_SEC_STRENGTHS) as i32;
    let cdef_pri_uv_strength = (cdef_uv_strength / CDEF_SEC_STRENGTHS) as i32;
    let mut cdef_sec_uv_strength = (cdef_uv_strength % CDEF_SEC_STRENGTHS) as i32;
    if cdef_sec_y_strength == 3 {
        cdef_sec_y_strength += 1;
    }
    if cdef_sec_uv_strength == 3 {
        cdef_sec_uv_strength += 1;
    }

    // Each direction block is 8x8 in y, potentially smaller if subsampled in chroma
    for by in 0..8 {
        for bx in 0..8 {
262
263
            let global_block_offset = sbo_global.block_offset(bx<<1, by<<1);
            if global_block_offset.x < bc_global.cols && global_block_offset.y < bc_global.rows {
264
265
266
267
                let skip = bc_global.at(&global_block_offset).skip
                         & bc_global.at(&sbo_global.block_offset(2*bx+1, 2*by)).skip
                         & bc_global.at(&sbo_global.block_offset(2*bx, 2*by+1)).skip
                         & bc_global.at(&sbo_global.block_offset(2*bx+1, 2*by+1)).skip;
268
                if !skip {
269
270
                    let dir = cdef_dirs.dir[bx][by];
                    let var = cdef_dirs.var[bx][by];
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
                    for p in 0..3 {
                        let mut out_plane = &mut out_frame.planes[p];
                        let out_po = sbo.plane_offset(&out_plane.cfg);
                        let mut in_plane = &mut in_frame.planes[p];
                        let in_po = sbo.plane_offset(&in_plane.cfg);
                        let xdec = in_plane.cfg.xdec;
                        let ydec = in_plane.cfg.ydec;

                        let in_stride = in_plane.cfg.stride;
                        let in_slice = &in_plane.mut_slice(&in_po);
                        let out_stride = out_plane.cfg.stride;
                        let mut out_slice = &mut out_plane.mut_slice(&out_po);
                            
                        let mut local_pri_strength;
                        let mut local_sec_strength;
                        let mut local_damping: i32 = cdef_damping + coeff_shift;
                        let mut local_dir: usize;
                            
                        if p==0 {
                            local_pri_strength = adjust_strength(cdef_pri_y_strength << coeff_shift, var);
                            local_sec_strength = cdef_sec_y_strength << coeff_shift;
                            local_dir = if cdef_pri_y_strength != 0 {dir as usize} else {0};
                        } else {
                            local_pri_strength = cdef_pri_uv_strength << coeff_shift;
                            local_sec_strength = cdef_sec_uv_strength << coeff_shift;
                            local_damping -= 1;
                            local_dir = if cdef_pri_uv_strength != 0 {dir as usize} else {0};
                        }
                            
                        cdef_filter_block(out_slice.offset_as_mutable(8*bx>>xdec,8*by>>ydec),
                                          out_stride as i32,
                                          in_slice.offset(8*bx>>xdec,8*by>>ydec),
                                          in_stride as i32, 
                                          local_pri_strength, local_sec_strength, local_dir,
                                          local_damping, local_damping,
                                          8 >> xdec, 8 >> ydec, coeff_shift as i32);
                    }
                }
            }
        }
    }
}

314
315
316
317
318
319
// Input to this process is the array CurrFrame of reconstructed samples.
// Output from this process is the array CdefFrame containing deringed samples.
// The purpose of CDEF is to perform deringing based on the detected direction of blocks.
// CDEF parameters are stored for each 64 by 64 block of pixels.
// The CDEF filter is applied on each 8 by 8 block of pixels.
// Reference: http://av1-spec.argondesign.com/av1-spec/av1-spec.html#cdef-process
320
pub fn cdef_filter_frame(fi: &FrameInvariants, rec: &mut Frame, bc: &mut BlockContext, bit_depth: usize) {
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

    // Each filter block is 64x64, except right and/or bottom for non-multiple-of-64 sizes.
    // FIXME: 128x128 SB support will break this, we need FilterBlockOffset etc.
    let fb_height = (fi.padded_h + 63) / 64;
    let fb_width = (fi.padded_w + 63) / 64;

    // Construct a padded copy of the reconstructed frame.
    let mut padded_px: [[usize; 2]; 3] = [[0; 2]; 3];
    for p in 0..3 {
        padded_px[p][0] =  (fb_width*64 >> rec.planes[p].cfg.xdec) + 4;
        padded_px[p][1] =  (fb_height*64 >> rec.planes[p].cfg.ydec) + 4;
    }
    let mut cdef_frame = Frame {
        planes: [
            Plane::new(padded_px[0][0], padded_px[0][1], rec.planes[0].cfg.xdec, rec.planes[0].cfg.ydec),
            Plane::new(padded_px[1][0], padded_px[1][1], rec.planes[1].cfg.xdec, rec.planes[1].cfg.ydec),
            Plane::new(padded_px[2][0], padded_px[2][1], rec.planes[2].cfg.xdec, rec.planes[2].cfg.ydec)
        ]
    };
    for p in 0..3 {
        let rec_w = fi.padded_w >> rec.planes[p].cfg.xdec;
        let rec_h = fi.padded_h >> rec.planes[p].cfg.ydec;
        for row in 0..padded_px[p][1] {
            // pad first two elements of current row
            {
                let mut cdef_slice = cdef_frame.planes[p].mut_slice(&PlaneOffset { x: 0, y: row});
                let mut cdef_row = &mut cdef_slice.as_mut_slice()[..2];
                cdef_row[0] = CDEF_VERY_LARGE;
                cdef_row[1] = CDEF_VERY_LARGE;
            }
            // pad out end of current row
            {
                let mut cdef_slice = cdef_frame.planes[p].mut_slice(&PlaneOffset { x: rec_w+2, y: row });
                let mut cdef_row = &mut cdef_slice.as_mut_slice()[..padded_px[p][0]-rec_w-2];
                for x in cdef_row {
                    *x = CDEF_VERY_LARGE;
                }
            }
            // copy current row from rec if we're in data, or pad if we're in first two rows/last N rows
            {
                let mut cdef_slice = cdef_frame.planes[p].mut_slice(&PlaneOffset { x: 2, y: row });
                let mut cdef_row = &mut cdef_slice.as_mut_slice()[..rec_w];
                if row < 2 || row >= rec_h+2 {
                    for x in cdef_row {
                        *x = CDEF_VERY_LARGE;
                    }
                } else {
                    let rec_stride = rec.planes[p].cfg.stride;
Michael Bebenita's avatar
Michael Bebenita committed
369
                    cdef_row.copy_from_slice(&rec.planes[p].data[(row-2)*rec_stride..(row-1)*rec_stride][..rec_w]);
370
371
372
373
374
375
376
377
378
                }
            }
        }
    }

    // Perform actual CDEF, using the padded copy as source, and the input rec vector as destination.
    for fby in 0..fb_height {
        for fbx in 0..fb_width {
            let sbo = SuperBlockOffset { x: fbx, y: fby };
379
            let cdef_index = bc.at(&sbo.block_offset(0, 0)).cdef_index;
380
381
            let cdef_dirs = cdef_analyze_superblock(&mut cdef_frame, bc, &sbo, &sbo, bit_depth);
            cdef_filter_superblock(fi, &mut cdef_frame, rec, bc, &sbo, &sbo, bit_depth, cdef_index, &cdef_dirs);
382
383
384
        }
    }
}