vpx_temporal_svc_encoder.c 30.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

11
//  This is an example demonstrating how to implement a multi-layer VPx
12
13
14
//  encoding scheme based on temporal scalability for video applications
//  that benefit from a scalable bitstream.

15
#include <assert.h>
16
#include <math.h>
17
18
19
20
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

21
#include "./vpx_config.h"
Tom Finegan's avatar
Tom Finegan committed
22
#include "../vpx_ports/vpx_timer.h"
23
24
25
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"

Tom Finegan's avatar
Tom Finegan committed
26
27
#include "../tools_common.h"
#include "../video_writer.h"
28

29
30
static const char *exec_name;

31
void usage_exit(void) {
32
33
34
  exit(EXIT_FAILURE);
}

35
36
37
38
39
// Denoiser states, for temporal denoising.
enum denoiserState {
  kDenoiserOff,
  kDenoiserOnYOnly,
  kDenoiserOnYUV,
40
41
  kDenoiserOnYUVAggressive,
  kDenoiserOnAdaptive
42
43
};

44
45
static int mode_to_num_layers[12] = {1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3};

46
47
48
49
50
51
52
53
54
// For rate control encoding stats.
struct RateControlMetrics {
  // Number of input frames per layer.
  int layer_input_frames[VPX_TS_MAX_LAYERS];
  // Total (cumulative) number of encoded frames per layer.
  int layer_tot_enc_frames[VPX_TS_MAX_LAYERS];
  // Number of encoded non-key frames per layer.
  int layer_enc_frames[VPX_TS_MAX_LAYERS];
  // Framerate per layer layer (cumulative).
55
  double layer_framerate[VPX_TS_MAX_LAYERS];
56
  // Target average frame size per layer (per-frame-bandwidth per layer).
57
  double layer_pfb[VPX_TS_MAX_LAYERS];
58
  // Actual average frame size per layer.
59
  double layer_avg_frame_size[VPX_TS_MAX_LAYERS];
60
  // Average rate mismatch per layer (|target - actual| / target).
61
  double layer_avg_rate_mismatch[VPX_TS_MAX_LAYERS];
62
  // Actual encoding bitrate per layer (cumulative).
63
  double layer_encoding_bitrate[VPX_TS_MAX_LAYERS];
64
65
66
67
68
69
70
71
72
  // Average of the short-time encoder actual bitrate.
  // TODO(marpan): Should we add these short-time stats for each layer?
  double avg_st_encoding_bitrate;
  // Variance of the short-time encoder actual bitrate.
  double variance_st_encoding_bitrate;
  // Window (number of frames) for computing short-timee encoding bitrate.
  int window_size;
  // Number of window measurements.
  int window_count;
73
  int layer_target_bitrate[VPX_MAX_LAYERS];
74
75
};

76
77
78
79
80
81
// Note: these rate control metrics assume only 1 key frame in the
// sequence (i.e., first frame only). So for temporal pattern# 7
// (which has key frame for every frame on base layer), the metrics
// computation will be off/wrong.
// TODO(marpan): Update these metrics to account for multiple key frames
// in the stream.
82
83
static void set_rate_control_metrics(struct RateControlMetrics *rc,
                                     vpx_codec_enc_cfg_t *cfg) {
84
  unsigned int i = 0;
85
86
  // Set the layer (cumulative) framerate and the target layer (non-cumulative)
  // per-frame-bandwidth, for the rate control encoding stats below.
87
  const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
88
  rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0];
89
  rc->layer_pfb[0] = 1000.0 * rc->layer_target_bitrate[0] /
90
91
92
93
94
      rc->layer_framerate[0];
  for (i = 0; i < cfg->ts_number_layers; ++i) {
    if (i > 0) {
      rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i];
      rc->layer_pfb[i] = 1000.0 *
95
          (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) /
96
97
98
99
100
101
102
103
104
          (rc->layer_framerate[i] - rc->layer_framerate[i - 1]);
    }
    rc->layer_input_frames[i] = 0;
    rc->layer_enc_frames[i] = 0;
    rc->layer_tot_enc_frames[i] = 0;
    rc->layer_encoding_bitrate[i] = 0.0;
    rc->layer_avg_frame_size[i] = 0.0;
    rc->layer_avg_rate_mismatch[i] = 0.0;
  }
105
106
107
108
  rc->window_count = 0;
  rc->window_size = 15;
  rc->avg_st_encoding_bitrate = 0.0;
  rc->variance_st_encoding_bitrate = 0.0;
109
110
111
112
113
}

static void printout_rate_control_summary(struct RateControlMetrics *rc,
                                          vpx_codec_enc_cfg_t *cfg,
                                          int frame_cnt) {
114
  unsigned int i = 0;
115
  int tot_num_frames = 0;
116
  double perc_fluctuation = 0.0;
117
118
119
120
121
122
123
  printf("Total number of processed frames: %d\n\n", frame_cnt -1);
  printf("Rate control layer stats for %d layer(s):\n\n",
      cfg->ts_number_layers);
  for (i = 0; i < cfg->ts_number_layers; ++i) {
    const int num_dropped = (i > 0) ?
        (rc->layer_input_frames[i] - rc->layer_enc_frames[i]) :
        (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1);
124
    tot_num_frames += rc->layer_input_frames[i];
125
    rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] *
126
        rc->layer_encoding_bitrate[i] / tot_num_frames;
127
128
129
130
131
    rc->layer_avg_frame_size[i] = rc->layer_avg_frame_size[i] /
        rc->layer_enc_frames[i];
    rc->layer_avg_rate_mismatch[i] = 100.0 * rc->layer_avg_rate_mismatch[i] /
        rc->layer_enc_frames[i];
    printf("For layer#: %d \n", i);
132
    printf("Bitrate (target vs actual): %d %f \n", rc->layer_target_bitrate[i],
133
134
135
136
137
138
139
140
141
142
           rc->layer_encoding_bitrate[i]);
    printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i],
           rc->layer_avg_frame_size[i]);
    printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]);
    printf("Number of input frames, encoded (non-key) frames, "
        "and perc dropped frames: %d %d %f \n", rc->layer_input_frames[i],
        rc->layer_enc_frames[i],
        100.0 * num_dropped / rc->layer_input_frames[i]);
    printf("\n");
  }
143
144
145
146
147
148
149
150
151
152
153
  rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
  rc->variance_st_encoding_bitrate =
      rc->variance_st_encoding_bitrate / rc->window_count -
      (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
  perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
      rc->avg_st_encoding_bitrate;
  printf("Short-time stats, for window of %d frames: \n",rc->window_size);
  printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
         rc->avg_st_encoding_bitrate,
         sqrt(rc->variance_st_encoding_bitrate),
         perc_fluctuation);
154
  if ((frame_cnt - 1) != tot_num_frames)
155
156
157
    die("Error: Number of input frames not equal to output! \n");
}

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// Temporal scaling parameters:
// NOTE: The 3 prediction frames cannot be used interchangeably due to
// differences in the way they are handled throughout the code. The
// frames should be allocated to layers in the order LAST, GF, ARF.
// Other combinations work, but may produce slightly inferior results.
static void set_temporal_layer_pattern(int layering_mode,
                                       vpx_codec_enc_cfg_t *cfg,
                                       int *layer_flags,
                                       int *flag_periodicity) {
  switch (layering_mode) {
    case 0: {
      // 1-layer.
      int ids[1] = {0};
      cfg->ts_periodicity = 1;
      *flag_periodicity = 1;
      cfg->ts_number_layers = 1;
      cfg->ts_rate_decimator[0] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // Update L only.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF;
      break;
    }
    case 1: {
      // 2-layers, 2-frame period.
      int ids[2] = {0, 1};
      cfg->ts_periodicity = 2;
      *flag_periodicity = 2;
      cfg->ts_number_layers = 2;
      cfg->ts_rate_decimator[0] = 2;
      cfg->ts_rate_decimator[1] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
#if 1
      // 0=L, 1=GF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
      layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_REF_ARF;
#else
       // 0=L, 1=GF, Intra-layer prediction disabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF;
      layer_flags[1] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_REF_LAST;
#endif
      break;
    }
    case 2: {
      // 2-layers, 3-frame period.
      int ids[3] = {0, 1, 1};
      cfg->ts_periodicity = 3;
      *flag_periodicity = 3;
      cfg->ts_number_layers = 2;
      cfg->ts_rate_decimator[0] = 3;
      cfg->ts_rate_decimator[1] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] =
      layer_flags[2] = VP8_EFLAG_NO_REF_GF  | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      break;
    }
    case 3: {
      // 3-layers, 6-frame period.
      int ids[6] = {0, 2, 2, 1, 2, 2};
      cfg->ts_periodicity = 6;
      *flag_periodicity = 6;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 6;
      cfg->ts_rate_decimator[1] = 3;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST;
      layer_flags[1] =
      layer_flags[2] =
      layer_flags[4] =
      layer_flags[5] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_LAST;
      break;
    }
    case 4: {
      // 3-layers, 4-frame period.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 4;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      layer_flags[1] =
      layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      break;
    }
    case 5: {
      // 3-layers, 4-frame period.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 4;
      cfg->ts_number_layers     = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled
      // in layer 2.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] =
      layer_flags[3] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      break;
    }
    case 6: {
      // 3-layers, 4-frame period.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 4;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] =
      layer_flags[3] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
      break;
    }
    case 7: {
      // NOTE: Probably of academic interest only.
      // 5-layers, 16-frame period.
      int ids[16] = {0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4};
      cfg->ts_periodicity = 16;
      *flag_periodicity = 16;
      cfg->ts_number_layers = 5;
      cfg->ts_rate_decimator[0] = 16;
      cfg->ts_rate_decimator[1] = 8;
      cfg->ts_rate_decimator[2] = 4;
      cfg->ts_rate_decimator[3] = 2;
      cfg->ts_rate_decimator[4] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      layer_flags[0]  = VPX_EFLAG_FORCE_KF;
      layer_flags[1]  =
      layer_flags[3]  =
      layer_flags[5]  =
      layer_flags[7]  =
      layer_flags[9]  =
      layer_flags[11] =
      layer_flags[13] =
      layer_flags[15] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[2]  =
      layer_flags[6]  =
      layer_flags[10] =
      layer_flags[14] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_GF;
      layer_flags[4] =
      layer_flags[12] = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[8]  = VP8_EFLAG_NO_REF_LAST | VP8_EFLAG_NO_REF_GF;
      break;
    }
    case 8: {
      // 2-layers, with sync point at first frame of layer 1.
      int ids[2] = {0, 1};
      cfg->ts_periodicity = 2;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 2;
      cfg->ts_rate_decimator[0] = 2;
      cfg->ts_rate_decimator[1] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF.
      // ARF is used as predictor for all frames, and is only updated on
      // key frame. Sync point every 8 frames.

      // Layer 0: predict from L and ARF, update L and G.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_UPD_ARF;
      // Layer 1: sync point: predict from L and ARF, and update G.
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      // Layer 0, predict from L and ARF, update L.
      layer_flags[2] = VP8_EFLAG_NO_REF_GF  | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF;
      // Layer 1: predict from L, G and ARF, and update G.
      layer_flags[3] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ENTROPY;
      // Layer 0.
      layer_flags[4] = layer_flags[2];
      // Layer 1.
      layer_flags[5] = layer_flags[3];
      // Layer 0.
      layer_flags[6] = layer_flags[4];
      // Layer 1.
      layer_flags[7] = layer_flags[5];
     break;
    }
    case 9: {
      // 3-layers: Sync points for layer 1 and 2 every 8 frames.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF.
      layer_flags[0] = VPX_EFLAG_FORCE_KF  | VP8_EFLAG_NO_REF_GF |
          VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
      layer_flags[2] = VP8_EFLAG_NO_REF_GF   | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[3] =
      layer_flags[5] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF;
      layer_flags[4] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_REF_ARF |
          VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF;
      layer_flags[6] = VP8_EFLAG_NO_REF_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ARF;
      layer_flags[7] = VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_ENTROPY;
      break;
    }
    case 10: {
      // 3-layers structure where ARF is used as predictor for all frames,
      // and is only updated on key frame.
      // Sync points for layer 1 and 2 every 8 frames.

      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF.
      // Layer 0: predict from L and ARF; update L and G.
      layer_flags[0] = VPX_EFLAG_FORCE_KF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_REF_GF;
      // Layer 2: sync point: predict from L and ARF; update none.
      layer_flags[1] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_GF |
          VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST |
          VP8_EFLAG_NO_UPD_ENTROPY;
      // Layer 1: sync point: predict from L and ARF; update G.
      layer_flags[2] = VP8_EFLAG_NO_REF_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST;
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[3] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
      // Layer 0: predict from L and ARF; update L.
      layer_flags[4] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_REF_GF;
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[5] = layer_flags[3];
      // Layer 1: predict from L, G, ARF; update G.
      layer_flags[6] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[7] = layer_flags[3];
      break;
    }
    case 11:
    default: {
      // 3-layers structure as in case 10, but no sync/refresh points for
      // layer 1 and 2.
      int ids[4] = {0, 2, 1, 2};
      cfg->ts_periodicity = 4;
      *flag_periodicity = 8;
      cfg->ts_number_layers = 3;
      cfg->ts_rate_decimator[0] = 4;
      cfg->ts_rate_decimator[1] = 2;
      cfg->ts_rate_decimator[2] = 1;
      memcpy(cfg->ts_layer_id, ids, sizeof(ids));
      // 0=L, 1=GF, 2=ARF.
      // Layer 0: predict from L and ARF; update L.
      layer_flags[0] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_REF_GF;
      layer_flags[4] = layer_flags[0];
      // Layer 1: predict from L, G, ARF; update G.
      layer_flags[2] = VP8_EFLAG_NO_UPD_ARF | VP8_EFLAG_NO_UPD_LAST;
      layer_flags[6] = layer_flags[2];
      // Layer 2: predict from L, G, ARF; update none.
      layer_flags[1] = VP8_EFLAG_NO_UPD_GF | VP8_EFLAG_NO_UPD_ARF |
          VP8_EFLAG_NO_UPD_LAST | VP8_EFLAG_NO_UPD_ENTROPY;
      layer_flags[3] = layer_flags[1];
      layer_flags[5] = layer_flags[1];
      layer_flags[7] = layer_flags[1];
      break;
    }
  }
}

int main(int argc, char **argv) {
467
  VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = {NULL};
468
469
470
471
472
473
474
  vpx_codec_ctx_t codec;
  vpx_codec_enc_cfg_t cfg;
  int frame_cnt = 0;
  vpx_image_t raw;
  vpx_codec_err_t res;
  unsigned int width;
  unsigned int height;
475
  int speed;
476
477
478
  int frame_avail;
  int got_data;
  int flags = 0;
479
  unsigned int i;
480
481
482
483
484
  int pts = 0;  // PTS starts at 0.
  int frame_duration = 1;  // 1 timebase tick per frame.
  int layering_mode = 0;
  int layer_flags[VPX_TS_MAX_PERIODICITY] = {0};
  int flag_periodicity = 1;
485
#if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION)
486
  vpx_svc_layer_id_t layer_id = {0, 0};
487
488
489
#else
  vpx_svc_layer_id_t layer_id = {0};
#endif
490
  const VpxInterface *encoder = NULL;
491
  FILE *infile = NULL;
492
  struct RateControlMetrics rc;
493
  int64_t cx_time = 0;
494
  const int min_args_base = 11;
495
#if CONFIG_VPX_HIGHBITDEPTH
496
497
498
499
500
  vpx_bit_depth_t bit_depth = VPX_BITS_8;
  int input_bit_depth = 8;
  const int min_args = min_args_base + 1;
#else
  const int min_args = min_args_base;
501
#endif  // CONFIG_VPX_HIGHBITDEPTH
502
503
504
  double sum_bitrate = 0.0;
  double sum_bitrate2 = 0.0;
  double framerate  = 30.0;
505
506
507

  exec_name = argv[0];
  // Check usage and arguments.
508
  if (argc < min_args) {
509
#if CONFIG_VPX_HIGHBITDEPTH
510
511
512
513
    die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
        "<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> "
        "<Rate_0> ... <Rate_nlayers-1> <bit-depth> \n", argv[0]);
#else
514
    die("Usage: %s <infile> <outfile> <codec_type(vp8/vp9)> <width> <height> "
515
        "<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> "
516
        "<Rate_0> ... <Rate_nlayers-1> \n", argv[0]);
517
#endif  // CONFIG_VPX_HIGHBITDEPTH
518
519
  }

520
521
522
523
  encoder = get_vpx_encoder_by_name(argv[3]);
  if (!encoder)
    die("Unsupported codec.");

524
  printf("Using %s\n", vpx_codec_iface_name(encoder->codec_interface()));
525
526
527
528
529
530
531

  width = strtol(argv[4], NULL, 0);
  height = strtol(argv[5], NULL, 0);
  if (width < 16 || width % 2 || height < 16 || height % 2) {
    die("Invalid resolution: %d x %d", width, height);
  }

532
  layering_mode = strtol(argv[10], NULL, 0);
533
  if (layering_mode < 0 || layering_mode > 12) {
534
    die("Invalid layering mode (0..12) %s", argv[10]);
535
536
  }

537
  if (argc != min_args + mode_to_num_layers[layering_mode]) {
538
539
540
    die("Invalid number of arguments");
  }

541
#if CONFIG_VPX_HIGHBITDEPTH
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
  switch (strtol(argv[argc-1], NULL, 0)) {
    case 8:
      bit_depth = VPX_BITS_8;
      input_bit_depth = 8;
      break;
    case 10:
      bit_depth = VPX_BITS_10;
      input_bit_depth = 10;
      break;
    case 12:
      bit_depth = VPX_BITS_12;
      input_bit_depth = 12;
      break;
    default:
      die("Invalid bit depth (8, 10, 12) %s", argv[argc-1]);
  }
  if (!vpx_img_alloc(&raw,
                     bit_depth == VPX_BITS_8 ? VPX_IMG_FMT_I420 :
                                               VPX_IMG_FMT_I42016,
                     width, height, 32)) {
    die("Failed to allocate image", width, height);
  }
#else
565
566
567
  if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, width, height, 32)) {
    die("Failed to allocate image", width, height);
  }
568
#endif  // CONFIG_VPX_HIGHBITDEPTH
569
570

  // Populate encoder configuration.
571
  res = vpx_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
572
573
574
575
576
577
578
579
580
  if (res) {
    printf("Failed to get config: %s\n", vpx_codec_err_to_string(res));
    return EXIT_FAILURE;
  }

  // Update the default configuration with our settings.
  cfg.g_w = width;
  cfg.g_h = height;

581
#if CONFIG_VPX_HIGHBITDEPTH
582
583
584
585
586
  if (bit_depth != VPX_BITS_8) {
    cfg.g_bit_depth = bit_depth;
    cfg.g_input_bit_depth = input_bit_depth;
    cfg.g_profile = 2;
  }
587
#endif  // CONFIG_VPX_HIGHBITDEPTH
588

589
590
591
592
  // Timebase format e.g. 30fps: numerator=1, demoninator = 30.
  cfg.g_timebase.num = strtol(argv[6], NULL, 0);
  cfg.g_timebase.den = strtol(argv[7], NULL, 0);

593
594
595
596
597
  speed = strtol(argv[8], NULL, 0);
  if (speed < 0) {
    die("Invalid speed setting: must be positive");
  }

598
599
600
  for (i = min_args_base;
       (int)i < min_args_base + mode_to_num_layers[layering_mode];
       ++i) {
601
602
603
604
605
    rc.layer_target_bitrate[i - 11] = strtol(argv[i], NULL, 0);
    if (strncmp(encoder->name, "vp8", 3) == 0)
      cfg.ts_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11];
    else if (strncmp(encoder->name, "vp9", 3) == 0)
      cfg.layer_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11];
606
607
608
  }

  // Real time parameters.
609
  cfg.rc_dropframe_thresh = strtol(argv[9], NULL, 0);
610
611
612
  cfg.rc_end_usage = VPX_CBR;
  cfg.rc_min_quantizer = 2;
  cfg.rc_max_quantizer = 56;
613
614
  if (strncmp(encoder->name, "vp9", 3) == 0)
    cfg.rc_max_quantizer = 52;
615
616
  cfg.rc_undershoot_pct = 50;
  cfg.rc_overshoot_pct = 50;
617
618
619
620
  cfg.rc_buf_initial_sz = 500;
  cfg.rc_buf_optimal_sz = 600;
  cfg.rc_buf_sz = 1000;

621
622
623
  // Disable dynamic resizing by default.
  cfg.rc_resize_allowed = 0;

624
625
626
  // Use 1 thread as default.
  cfg.g_threads = 1;

627
628
629
  // Enable error resilient mode.
  cfg.g_error_resilient = 1;
  cfg.g_lag_in_frames   = 0;
630
  cfg.kf_mode = VPX_KF_AUTO;
631
632
633
634

  // Disable automatic keyframe placement.
  cfg.kf_min_dist = cfg.kf_max_dist = 3000;

635
636
  cfg.temporal_layering_mode = VP9E_TEMPORAL_LAYERING_MODE_BYPASS;

637
638
639
640
641
  set_temporal_layer_pattern(layering_mode,
                             &cfg,
                             layer_flags,
                             &flag_periodicity);

642
643
  set_rate_control_metrics(&rc, &cfg);

644
  // Target bandwidth for the whole stream.
645
  // Set to layer_target_bitrate for highest layer (total bitrate).
646
  cfg.rc_target_bitrate = rc.layer_target_bitrate[cfg.ts_number_layers - 1];
647

648
  // Open input file.
649
  if (!(infile = fopen(argv[1], "rb"))) {
650
651
652
    die("Failed to open %s for reading", argv[1]);
  }

653
  framerate = cfg.g_timebase.den / cfg.g_timebase.num;
654
655
  // Open an output file for each stream.
  for (i = 0; i < cfg.ts_number_layers; ++i) {
656
657
    char file_name[PATH_MAX];
    VpxVideoInfo info;
658
    info.codec_fourcc = encoder->fourcc;
659
660
661
662
663
    info.frame_width = cfg.g_w;
    info.frame_height = cfg.g_h;
    info.time_base.numerator = cfg.g_timebase.num;
    info.time_base.denominator = cfg.g_timebase.den;

664
    snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i);
665
666
    outfile[i] = vpx_video_writer_open(file_name, kContainerIVF, &info);
    if (!outfile[i])
667
      die("Failed to open %s for writing", file_name);
668
669

    assert(outfile[i] != NULL);
670
671
672
673
674
  }
  // No spatial layers in this encoder.
  cfg.ss_number_layers = 1;

  // Initialize codec.
675
#if CONFIG_VPX_HIGHBITDEPTH
676
677
678
679
  if (vpx_codec_enc_init(
          &codec, encoder->codec_interface(), &cfg,
          bit_depth == VPX_BITS_8 ? 0 : VPX_CODEC_USE_HIGHBITDEPTH))
#else
680
  if (vpx_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
681
#endif  // CONFIG_VPX_HIGHBITDEPTH
682
683
    die_codec(&codec, "Failed to initialize encoder");

684
685
  if (strncmp(encoder->name, "vp8", 3) == 0) {
    vpx_codec_control(&codec, VP8E_SET_CPUUSED, -speed);
686
    vpx_codec_control(&codec, VP8E_SET_NOISE_SENSITIVITY, kDenoiserOff);
687
    vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
688
  } else if (strncmp(encoder->name, "vp9", 3) == 0) {
689
    vpx_svc_extra_cfg_t svc_params;
Marco's avatar
Marco committed
690
691
692
693
    vpx_codec_control(&codec, VP8E_SET_CPUUSED, speed);
    vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3);
    vpx_codec_control(&codec, VP9E_SET_FRAME_PERIODIC_BOOST, 0);
    vpx_codec_control(&codec, VP9E_SET_NOISE_SENSITIVITY, 0);
694
    vpx_codec_control(&codec, VP8E_SET_STATIC_THRESHOLD, 1);
Marco's avatar
Marco committed
695
    vpx_codec_control(&codec, VP9E_SET_TUNE_CONTENT, 0);
Marco's avatar
Marco committed
696
697
698
699
700
701
    vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (cfg.g_threads >> 1));
    if (vpx_codec_control(&codec, VP9E_SET_SVC, layering_mode > 0 ? 1: 0))
      die_codec(&codec, "Failed to set SVC");
    for (i = 0; i < cfg.ts_number_layers; ++i) {
      svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
      svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
702
    }
Marco's avatar
Marco committed
703
704
705
    svc_params.scaling_factor_num[0] = cfg.g_h;
    svc_params.scaling_factor_den[0] = cfg.g_h;
    vpx_codec_control(&codec, VP9E_SET_SVC_PARAMETERS, &svc_params);
706
  }
Marco's avatar
Marco committed
707
708
709
  if (strncmp(encoder->name, "vp8", 3) == 0) {
    vpx_codec_control(&codec, VP8E_SET_SCREEN_CONTENT_MODE, 0);
  }
710
  vpx_codec_control(&codec, VP8E_SET_TOKEN_PARTITIONS, 1);
711
712
713
  // This controls the maximum target size of the key frame.
  // For generating smaller key frames, use a smaller max_intra_size_pct
  // value, like 100 or 200.
714
  {
715
    const int max_intra_size_pct = 900;
716
717
718
    vpx_codec_control(&codec, VP8E_SET_MAX_INTRA_BITRATE_PCT,
                      max_intra_size_pct);
  }
719
720
721

  frame_avail = 1;
  while (frame_avail || got_data) {
722
    struct vpx_usec_timer timer;
723
724
    vpx_codec_iter_t iter = NULL;
    const vpx_codec_cx_pkt_t *pkt;
725
#if VPX_ENCODER_ABI_VERSION > (4 + VPX_CODEC_ABI_VERSION)
726
727
    // Update the temporal layer_id. No spatial layers in this test.
    layer_id.spatial_layer_id = 0;
728
#endif
729
730
    layer_id.temporal_layer_id =
        cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
731
732
    if (strncmp(encoder->name, "vp9", 3) == 0) {
      vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
Marco's avatar
Marco committed
733
734
735
    } else if (strncmp(encoder->name, "vp8", 3) == 0) {
      vpx_codec_control(&codec, VP8E_SET_TEMPORAL_LAYER_ID,
                        layer_id.temporal_layer_id);
736
    }
737
    flags = layer_flags[frame_cnt % flag_periodicity];
738
739
    if (layering_mode == 0)
      flags = 0;
740
    frame_avail = vpx_img_read(&raw, infile);
741
742
    if (frame_avail)
      ++rc.layer_input_frames[layer_id.temporal_layer_id];
743
    vpx_usec_timer_start(&timer);
744
745
746
747
    if (vpx_codec_encode(&codec, frame_avail? &raw : NULL, pts, 1, flags,
        VPX_DL_REALTIME)) {
      die_codec(&codec, "Failed to encode frame");
    }
748
749
    vpx_usec_timer_mark(&timer);
    cx_time += vpx_usec_timer_elapsed(&timer);
750
751
752
753
754
755
756
757
758
759
760
    // Reset KF flag.
    if (layering_mode != 7) {
      layer_flags[0] &= ~VPX_EFLAG_FORCE_KF;
    }
    got_data = 0;
    while ( (pkt = vpx_codec_get_cx_data(&codec, &iter)) ) {
      got_data = 1;
      switch (pkt->kind) {
        case VPX_CODEC_CX_FRAME_PKT:
          for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
              i < cfg.ts_number_layers; ++i) {
761
762
            vpx_video_writer_write_frame(outfile[i], pkt->data.frame.buf,
                                         pkt->data.frame.sz, pts);
763
764
765
766
767
768
769
770
771
772
773
            ++rc.layer_tot_enc_frames[i];
            rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz;
            // Keep count of rate control stats per layer (for non-key frames).
            if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] &&
                !(pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
              rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz;
              rc.layer_avg_rate_mismatch[i] +=
                  fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) /
                  rc.layer_pfb[i];
              ++rc.layer_enc_frames[i];
            }
774
          }
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
          // Update for short-time encoding bitrate states, for moving window
          // of size rc->window, shifted by rc->window / 2.
          // Ignore first window segment, due to key frame.
          if (frame_cnt > rc.window_size) {
            sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
            if (frame_cnt % rc.window_size == 0) {
              rc.window_count += 1;
              rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
              rc.variance_st_encoding_bitrate +=
                  (sum_bitrate / rc.window_size) *
                  (sum_bitrate / rc.window_size);
              sum_bitrate = 0.0;
            }
          }
          // Second shifted window.
          if (frame_cnt > rc.window_size + rc.window_size / 2) {
            sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
            if (frame_cnt > 2 * rc.window_size &&
                frame_cnt % rc.window_size == 0) {
              rc.window_count += 1;
              rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
              rc.variance_st_encoding_bitrate +=
                  (sum_bitrate2 / rc.window_size) *
                  (sum_bitrate2 / rc.window_size);
              sum_bitrate2 = 0.0;
            }
          }
802
803
804
805
806
807
808
809
          break;
          default:
            break;
      }
    }
    ++frame_cnt;
    pts += frame_duration;
  }
810
  fclose(infile);
811
  printout_rate_control_summary(&rc, &cfg, frame_cnt);
812
813
814
815
816
  printf("\n");
  printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
          frame_cnt,
          1000 * (float)cx_time / (double)(frame_cnt * 1000000),
          1000000 * (double)frame_cnt / (double)cx_time);
817

818
  if (vpx_codec_destroy(&codec))
819
    die_codec(&codec, "Failed to destroy codec");
820

821
  // Try to rewrite the output file headers with the actual frame count.
822
823
824
  for (i = 0; i < cfg.ts_number_layers; ++i)
    vpx_video_writer_close(outfile[i]);

825
  vpx_img_free(&raw);
826
827
  return EXIT_SUCCESS;
}