Skip to content
Snippets Groups Projects
Commit c4ff3a04 authored by Jean-Marc Valin's avatar Jean-Marc Valin
Browse files

Modifies the comparison tool to make it much more permissive.

parent 75f04e5e
No related branches found
No related tags found
No related merge requests found
......@@ -5,13 +5,8 @@
#define OPUS_PI (3.14159265F)
#define OPUS_MIN(_x,_y) ((_x)<(_y)?(_x):(_y))
#define OPUS_MAX(_x,_y) ((_x)>(_y)?(_x):(_y))
#define OPUS_CLAMP(_a,_b,_c) OPUS_MAX(_a,OPUS_MIN(_b,_c))
#define OPUS_COSF(_x) ((float)cos(_x))
#define OPUS_SINF(_x) ((float)sin(_x))
#define OPUS_SQRTF(_x) ((float)sqrt(_x))
#define OPUS_LOG10F(_x) ((float)log10(_x))
static void *check_alloc(void *_ptr){
if(_ptr==NULL){
......@@ -29,8 +24,7 @@ static void *opus_realloc(void *_ptr,size_t _size){
return check_alloc(realloc(_ptr,_size));
}
static size_t read_pcm16(float **_samples,FILE *_fin,
int _nchannels){
static size_t read_pcm16(float **_samples,FILE *_fin,int _nchannels){
unsigned char buf[1024];
float *samples;
size_t nsamples;
......@@ -60,47 +54,46 @@ static size_t read_pcm16(float **_samples,FILE *_fin,
nsamples+=nread;
}
*_samples=(float *)opus_realloc(samples,
_nchannels*nsamples*sizeof(*samples));
_nchannels*nsamples*sizeof(*samples));
return nsamples;
}
static void band_energy(float *_out,const int *_bands,int _nbands,
static void band_energy(float *_out,float *_ps,const int *_bands,int _nbands,
const float *_in,int _nchannels,size_t _nframes,int _window_sz,
int _step){
int _step,int _downsample){
float *window;
float *x;
float *c;
float *s;
size_t xi;
int xj;
window=(float *)opus_malloc((3+_nchannels)*_window_sz
*sizeof(*window));
int ps_sz;
window=(float *)opus_malloc((3+_nchannels)*_window_sz*sizeof(*window));
c=window+_window_sz;
s=c+_window_sz;
x=s+_window_sz;
ps_sz=_window_sz/2;
for(xj=0;xj<_window_sz;xj++){
window[xj]=0.5F-0.5F*OPUS_COSF((2*OPUS_PI/(_window_sz-1))*xj);
}
for(xj=0;xj<_window_sz;xj++)
c[xj]=OPUS_COSF((2*OPUS_PI/_window_sz)*xj);
for(xj=0;xj<_window_sz;xj++)
s[xj]=OPUS_SINF((2*OPUS_PI/_window_sz)*xj);
for(xj=0;xj<_window_sz;xj++){
c[xj]=OPUS_COSF((2*OPUS_PI/_window_sz)*xj);
}
for(xj=0;xj<_window_sz;xj++){
s[xj]=OPUS_SINF((2*OPUS_PI/_window_sz)*xj);
}
for(xi=0;xi<_nframes;xi++){
int ci;
int xk;
int bi;
for(ci=0;ci<_nchannels;ci++){
for(xk=0;xk<_window_sz;xk++){
x[ci*_window_sz+xk]=window[xk]
*_in[(xi*_step+xk)*_nchannels+ci];
x[ci*_window_sz+xk]=window[xk]*_in[(xi*_step+xk)*_nchannels+ci];
}
}
for(bi=xj=0;bi<_nbands;bi++){
float e2;
e2=0;
float p[2]={0};
for(;xj<_bands[bi+1];xj++){
float p;
p=0;
for(ci=0;ci<_nchannels;ci++){
float re;
float im;
......@@ -113,26 +106,25 @@ static void band_energy(float *_out,const int *_bands,int _nbands,
ti+=xj;
if(ti>=_window_sz)ti-=_window_sz;
}
p+=OPUS_SQRTF(re*re+im*im);
re*=_downsample;
im*=_downsample;
_ps[(xi*ps_sz+xj)*_nchannels+ci]=re*re+im*im+100000;
p[ci]+=_ps[(xi*ps_sz+xj)*_nchannels+ci];
}
}
if(_out){
_out[(xi*_nbands+bi)*_nchannels]=p[0]/(_bands[bi+1]-_bands[bi]);
if(_nchannels==2){
_out[(xi*_nbands+bi)*_nchannels+1]=p[1]/(_bands[bi+1]-_bands[bi]);
}
p*=(1.0F/_nchannels);
e2+=p*p;
}
_out[xi*_nbands+bi]=e2/(_bands[bi+1]-_bands[bi])+1;
}
}
free(window);
}
static int cmp_float(const void *_a,const void *_b){
float a;
float b;
a=*(const float *)_a;
b=*(const float *)_b;
return (a>b)-(a<b);
}
#define NBANDS (21)
#define NFREQS (240)
/*Bands on which we compute the pseudo-NMR (Bark-derived
CELT bands).*/
......@@ -140,70 +132,85 @@ static const int BANDS[NBANDS+1]={
0,2,4,6,8,10,12,14,16,20,24,28,32,40,48,56,68,80,96,120,156,200
};
/*Per-band NMR threshold.*/
static const float NMR_THRESH[NBANDS]={
85113.804F,72443.596F,61659.5F, 52480.746F,44668.359F,38018.940F,
32359.366F,27542.287F,23442.288F,19952.623F,16982.437F,14454.398F,
12302.688F,10471.285F, 8912.5094F,7585.7758F,6456.5423F,5495.4087F,
4677.3514F,3981.0717F,3388.4416F
};
/*Noise floor.*/
static const float NOISE_FLOOR[NBANDS]={
8.7096359F,7.5857758F,6.6069345F,5.7543994F,5.0118723F,4.3651583F,
3.8018940F,3.3113112F,2.8840315F,2.5118864F,2.1877616F,1.9054607F,
1.6595869F,1.4454398F,1.2589254F,1.0964782F,0.95499259F,0.83176377F,
0.72443596F,0.63095734F,0.54954087F
};
#define TEST_WIN_SIZE (480)
#define TEST_WIN_STEP (TEST_WIN_SIZE>>1)
int main(int _argc,const char **_argv){
FILE *fin1;
FILE *fin2;
float *x;
float *y;
float *xb;
float *eb;
float *nmr;
float thresh;
float mismatch;
float err;
float nmr_sum;
size_t weight;
size_t xlength;
size_t ylength;
size_t nframes;
size_t xi;
int bi;
int nchannels;
if(_argc<3||_argc>4){
fprintf(stderr,"Usage: %s [-s] <file1.sw> <file2.sw>\n",
_argv[0]);
FILE *fin1;
FILE *fin2;
float *x;
float *y;
float *xb;
float *X;
float *Y;
float err;
float Q;
size_t xlength;
size_t ylength;
size_t nframes;
size_t xi;
int ci;
int xj;
int bi;
int nchannels;
unsigned rate;
int downsample;
int ybands;
int yfreqs;
int max_compare;
if(_argc<3||_argc>6){
fprintf(stderr,"Usage: %s [-s] [-r rate2] <file1.sw> <file2.sw>\n",
_argv[0]);
return EXIT_FAILURE;
}
nchannels=1;
if(strcmp(_argv[1],"-s")==0)nchannels=2;
fin1=fopen(_argv[nchannels],"rb");
if(strcmp(_argv[1],"-s")==0){
nchannels=2;
_argv++;
}
rate=48000;
ybands=NBANDS;
yfreqs=NFREQS;
downsample=1;
if(strcmp(_argv[1],"-r")==0){
rate=atoi(_argv[2]);
if(rate!=8000&&rate!=12000&&rate!=16000&&rate!=24000&&rate!=48000){
fprintf(stderr,
"Sampling rate must be 8000, 12000, 16000, 24000, or 48000\n");
return EXIT_FAILURE;
}
downsample=48000/rate;
switch(rate){
case 8000:ybands=13;break;
case 12000:ybands=15;break;
case 16000:ybands=17;break;
case 24000:ybands=19;break;
}
yfreqs=NFREQS/downsample;
_argv+=2;
}
fin1=fopen(_argv[1],"rb");
if(fin1==NULL){
fprintf(stderr,"Error opening '%s'.\n",_argv[nchannels]);
fprintf(stderr,"Error opening '%s'.\n",_argv[1]);
return EXIT_FAILURE;
}
fin2=fopen(_argv[nchannels+1],"rb");
fin2=fopen(_argv[2],"rb");
if(fin2==NULL){
fprintf(stderr,"Error opening '%s'.\n",_argv[nchannels+1]);
fprintf(stderr,"Error opening '%s'.\n",_argv[2]);
fclose(fin1);
return EXIT_FAILURE;
}
/*Read in the data and allocate scratch space.*/
xlength=read_pcm16(&x,fin1,nchannels);
xlength=read_pcm16(&x,fin1,2);
if(nchannels==1){
for(xi=0;xi<xlength;xi++)x[xi]=.5*(x[2*xi]+x[2*xi+1]);
}
fclose(fin1);
ylength=read_pcm16(&y,fin2,nchannels);
fclose(fin2);
if(xlength!=ylength){
if(xlength!=ylength*downsample){
fprintf(stderr,"Sample counts do not match (%lu!=%lu).\n",
(unsigned long)xlength,(unsigned long)ylength);
(unsigned long)xlength,(unsigned long)ylength*downsample);
return EXIT_FAILURE;
}
if(xlength<TEST_WIN_SIZE){
......@@ -212,73 +219,102 @@ int main(int _argc,const char **_argv){
return EXIT_FAILURE;
}
nframes=(xlength-TEST_WIN_SIZE+TEST_WIN_STEP)/TEST_WIN_STEP;
xb=(float *)opus_malloc(nframes*NBANDS*sizeof(*xb));
eb=(float *)opus_malloc(nframes*NBANDS*sizeof(*eb));
nmr=(float *)opus_malloc(nframes*NBANDS*sizeof(*nmr));
/*Compute the error signal.*/
for(xi=0;xi<xlength*nchannels;xi++){
err=x[xi]-y[xi];
y[xi]=err-OPUS_CLAMP(-1,err,1);
}
xb=(float *)opus_malloc(nframes*NBANDS*nchannels*sizeof(*xb));
X=(float *)opus_malloc(nframes*NFREQS*nchannels*sizeof(*X));
Y=(float *)opus_malloc(nframes*yfreqs*nchannels*sizeof(*Y));
/*Compute the per-band spectral energy of the original signal
and the error.*/
band_energy(xb,BANDS,NBANDS,x,nchannels,nframes,
TEST_WIN_SIZE,TEST_WIN_STEP);
and the error.*/
band_energy(xb,X,BANDS,NBANDS,x,nchannels,nframes,
TEST_WIN_SIZE,TEST_WIN_STEP,1);
free(x);
band_energy(eb,BANDS,NBANDS,y,nchannels,nframes,
TEST_WIN_SIZE,TEST_WIN_STEP);
band_energy(NULL,Y,BANDS,ybands,y,nchannels,nframes,
TEST_WIN_SIZE/downsample,TEST_WIN_STEP/downsample,downsample);
free(y);
nmr_sum=0;
for(xi=0;xi<nframes;xi++){
/*Frequency masking (low to high): 10 dB/Bark slope.*/
for(bi=1;bi<NBANDS;bi++)
xb[xi*NBANDS+bi]+=0.1F*xb[xi*NBANDS+bi-1];
for(bi=1;bi<NBANDS;bi++){
for(ci=0;ci<nchannels;ci++){
xb[(xi*NBANDS+bi)*nchannels+ci]+=
0.1F*xb[(xi*NBANDS+bi-1)*nchannels+ci];
}
}
/*Frequency masking (high to low): 15 dB/Bark slope.*/
for(bi=NBANDS-1;bi-->0;)
xb[xi*NBANDS+bi]+=0.03F*xb[xi*NBANDS+bi+1];
for(bi=NBANDS-1;bi-->0;){
for(ci=0;ci<nchannels;ci++){
xb[(xi*NBANDS+bi)*nchannels+ci]+=
0.03F*xb[(xi*NBANDS+bi+1)*nchannels+ci];
}
}
if(xi>0){
/*Temporal masking: 5 dB/5ms slope.*/
for(bi=0;bi<NBANDS;bi++)
xb[xi*NBANDS+bi]+=0.3F*xb[(xi-1)*NBANDS+bi];
for(bi=0;bi<NBANDS;bi++){
for(ci=0;ci<nchannels;ci++){
xb[(xi*NBANDS+bi)*nchannels+ci]+=
0.3F*xb[((xi-1)*NBANDS+bi)*nchannels+ci];
}
}
}
/*Compute NMR.*/
for(bi=0;bi<NBANDS;bi++){
nmr[xi*NBANDS+bi]=xb[xi*NBANDS+bi]/eb[xi*NBANDS+bi];
nmr_sum+=10*OPUS_LOG10F(nmr[xi*NBANDS+bi]);
if(nchannels==2){
for(bi=0;bi<NBANDS;bi++){
float l,r;
l=xb[(xi*NBANDS+bi)*nchannels+0];
r=xb[(xi*NBANDS+bi)*nchannels+1];
xb[(xi*NBANDS+bi)*nchannels+0]+=0.01F*r;
xb[(xi*NBANDS+bi)*nchannels+1]+=0.01F*l;
}
}
for(bi=0;bi<ybands;bi++){
for(xj=BANDS[bi];xj<BANDS[bi+1];xj++){
for(ci=0;ci<nchannels;ci++){
X[(xi*NFREQS+xj)*nchannels+ci]+=
0.01F*xb[(xi*NBANDS+bi)*nchannels+ci];
Y[(xi*yfreqs+xj)*nchannels+ci]+=
0.01F*xb[(xi*NBANDS+bi)*nchannels+ci];
}
}
}
}
/*Find the 90th percentile of the errors.*/
memcpy(xb,eb,nframes*NBANDS*sizeof(*xb));
qsort(xb,nframes*NBANDS,sizeof(*xb),cmp_float);
thresh=xb[(9*nframes*NBANDS+5)/10];
free(xb);
/*Compute the mismatch.*/
mismatch=0;
weight=0;
/*If working at a lower sampling rate, don't take into account the last
300 Hz to allow for different transition bands.
For 12 kHz, we don't skip anything, because the last band already skips
400 Hz.*/
if(rate==48000)max_compare=BANDS[NBANDS];
else if(rate==12000)max_compare=BANDS[ybands];
else max_compare=BANDS[ybands]-3;
err=0;
for(xi=0;xi<nframes;xi++){
for(bi=0;bi<NBANDS;bi++){
if(eb[xi*NBANDS+bi]>thresh){
mismatch+=NMR_THRESH[bi]/nmr[xi*NBANDS+bi];
weight++;
float Ef;
Ef=0;
for(xj=0;xj<max_compare;xj++){
for(ci=0;ci<nchannels;ci++){
float re;
float im;
re=Y[(xi*yfreqs+xj)*nchannels+ci]/X[(xi*NFREQS+xj)*nchannels+ci];
im=re-log(re)-1;
/*Make comparison less sensitive around the SILK/CELT cross-over to
allow for mode freedom in the filters.*/
if(xj>=79&&xj<=81)im*=0.1F;
if(xj==80)im*=0.1F;
Ef+=im*im;
}
}
/*Using a fixed normalization value means we're willing to accept slightly
lower quality for lower sampling rates.*/
Ef/=200*nchannels;
Ef*=Ef;
err+=Ef*Ef;
}
free(nmr);
free(eb);
printf("Average pseudo-NMR: %3.2f dB\n",nmr_sum/(nframes*NBANDS));
if(weight<=0){
err=-100;
printf("Mismatch level: below noise floor\n");
err=pow(err/nframes,1.0/16);
Q=100*(1-0.5*log(1+err)/log(1.13));
if(Q<0){
fprintf(stderr,"Test vector FAILS\n");
fprintf(stderr,"Internal weighted error is %f\n",err);
return EXIT_FAILURE;
}
else{
err=10*OPUS_LOG10F(mismatch/weight);
printf("Weighted mismatch: %3.2f dB\n",err);
}
printf("\n");
if(err<0){
printf("**Decoder PASSES test (mismatch < 0 dB)\n");
fprintf(stderr,"Test vector PASSES\n");
fprintf(stderr,
"Opus quality metric: %.1f %% (internal weighted error is %f)\n",Q,err);
return EXIT_SUCCESS;
}
printf("**Decoder FAILS test (mismatch >= 0 dB)\n");
return EXIT_FAILURE;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment