Newer
Older
/* Copyright (c) 2007-2008 CSIRO
Copyright (c) 2007-2008 Xiph.Org Foundation
Written by Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This is a simple MDCT implementation that uses a N/4 complex FFT
to do most of the work. It should be relatively straightforward to
plug in pretty much and FFT here.
This replaces the Vorbis FFT (and uses the exact same API), which
was a bit too messy and that was ending up duplicating code
(might as well use the same FFT everywhere).
The algorithm is similar to (and inspired from) Fabrice Bellard's
MDCT implementation in FFMPEG, but has differences in signs, ordering
and scaling in many places.

Jean-Marc Valin
committed
#ifndef SKIP_CONFIG_H
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

Jean-Marc Valin
committed
#include "mdct.h"
#include <math.h>

Jean-Marc Valin
committed
#include "mathops.h"
#include "stack_alloc.h"

Jean-Marc Valin
committed
int clt_mdct_init(mdct_lookup *l,int N, int maxshift)
{
int i;
int N4, N2;
N2 = N>>1;
N4 = N>>2;
l->maxshift = maxshift;
for (i=0;i<=maxshift;i++)
{
l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0);
l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0]);
l->trig = trig = (kiss_twiddle_scalar*)celt_alloc((N4+1)*sizeof(kiss_twiddle_scalar));
if (l->trig==NULL)
/* We have enough points that sine isn't necessary */
for (i=0;i<=N4;i++)
trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2),N));
for (i=0;i<=N4;i++)
trig[i] = (kiss_twiddle_scalar)cos(2*PI*i/N);

Jean-Marc Valin
committed
}
void clt_mdct_clear(mdct_lookup *l)
int i;
for (i=0;i<=l->maxshift;i++)
opus_fft_free(l->kfft[i]);

Jean-Marc Valin
committed
}
#endif /* CUSTOM_MODES */
void clt_mdct_forward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * restrict out,
const opus_val16 *window, int overlap, int shift, int stride)
{
int i;

Jean-Marc Valin
committed
VARDECL(kiss_fft_scalar, f);
SAVE_STACK;
N2 = N>>1;
N4 = N>>2;
/* sin(x) ~= x here */
#ifdef FIXED_POINT
sine = TRIG_UPSCALE*(QCONST16(0.7853981f, 15)+N2)/N;
#else
sine = (kiss_twiddle_scalar)2*PI*(.125f)/N;
#endif
/* Consider the input to be composed of four blocks: [a, b, c, d] */
/* Window, shuffle, fold */

Jean-Marc Valin
committed
/* Temp pointers to make it really clear to the compiler what we're doing */
const kiss_fft_scalar * restrict xp1 = in+(overlap>>1);
const kiss_fft_scalar * restrict xp2 = in+N2-1+(overlap>>1);
kiss_fft_scalar * restrict yp = f;
const opus_val16 * restrict wp1 = window+(overlap>>1);
const opus_val16 * restrict wp2 = window+(overlap>>1)-1;
for(i=0;i<(overlap>>2);i++)

Jean-Marc Valin
committed
{
/* Real part arranged as -d-cR, Imag part arranged as -b+aR*/
*yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2);
*yp++ = MULT16_32_Q15(*wp1, *xp1) - MULT16_32_Q15(*wp2, xp2[-N2]);

Jean-Marc Valin
committed
xp1+=2;
xp2-=2;
wp1+=2;
wp2-=2;
}
wp1 = window;
wp2 = window+overlap-1;
for(;i<N4-(overlap>>2);i++)

Jean-Marc Valin
committed
{
/* Real part arranged as a-bR, Imag part arranged as -c-dR */
*yp++ = *xp2;
*yp++ = *xp1;

Jean-Marc Valin
committed
xp1+=2;
xp2-=2;
}

Jean-Marc Valin
committed
for(;i<N4;i++)
{
/* Real part arranged as a-bR, Imag part arranged as -c-dR */
*yp++ = -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2);
*yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]);

Jean-Marc Valin
committed
xp1+=2;
xp2-=2;
wp1+=2;
wp2-=2;
}
}
/* Pre-rotation */
{
kiss_fft_scalar * restrict yp = f;

Jean-Marc Valin
committed
const kiss_twiddle_scalar *t = &l->trig[0];
for(i=0;i<N4;i++)
{
kiss_fft_scalar re, im, yr, yi;
re = yp[0];
im = yp[1];
yr = -S_MUL(re,t[i<<shift]) - S_MUL(im,t[(N4-i)<<shift]);
yi = -S_MUL(im,t[i<<shift]) + S_MUL(re,t[(N4-i)<<shift]);
/* works because the cos is nearly one */
*yp++ = yr + S_MUL(yi,sine);
*yp++ = yi - S_MUL(yr,sine);

Jean-Marc Valin
committed
}
/* N/4 complex FFT, down-scales by 4/N */
opus_fft(l->kfft[shift], (kiss_fft_cpx *)f, (kiss_fft_cpx *)in);
/* Post-rotate */

Jean-Marc Valin
committed
/* Temp pointers to make it really clear to the compiler what we're doing */
const kiss_fft_scalar * restrict fp = in;

Jean-Marc Valin
committed
kiss_fft_scalar * restrict yp1 = out;
kiss_fft_scalar * restrict yp2 = out+stride*(N2-1);

Jean-Marc Valin
committed
const kiss_twiddle_scalar *t = &l->trig[0];

Jean-Marc Valin
committed
/* Temp pointers to make it really clear to the compiler what we're doing */
for(i=0;i<N4;i++)
{
kiss_fft_scalar yr, yi;
yr = S_MUL(fp[1],t[(N4-i)<<shift]) + S_MUL(fp[0],t[i<<shift]);
yi = S_MUL(fp[0],t[(N4-i)<<shift]) - S_MUL(fp[1],t[i<<shift]);
/* works because the cos is nearly one */
*yp1 = yr - S_MUL(yi,sine);
*yp2 = yi + S_MUL(yr,sine);;

Jean-Marc Valin
committed
fp += 2;
yp1 += 2*stride;
yp2 -= 2*stride;

Jean-Marc Valin
committed
}
RESTORE_STACK;

Jean-Marc Valin
committed
}
void clt_mdct_backward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * restrict out,
const opus_val16 * restrict window, int overlap, int shift, int stride)
{
int i;
int N, N2, N4;

Jean-Marc Valin
committed
VARDECL(kiss_fft_scalar, f);

Jean-Marc Valin
committed
VARDECL(kiss_fft_scalar, f2);
SAVE_STACK;
N2 = N>>1;
N4 = N>>2;

Jean-Marc Valin
committed
ALLOC(f2, N2, kiss_fft_scalar);
/* sin(x) ~= x here */
#ifdef FIXED_POINT
sine = TRIG_UPSCALE*(QCONST16(0.7853981f, 15)+N2)/N;
#else
sine = (kiss_twiddle_scalar)2*PI*(.125f)/N;
#endif
/* Pre-rotate */
{
/* Temp pointers to make it really clear to the compiler what we're doing */
const kiss_fft_scalar * restrict xp1 = in;
const kiss_fft_scalar * restrict xp2 = in+stride*(N2-1);

Jean-Marc Valin
committed
kiss_fft_scalar * restrict yp = f2;

Jean-Marc Valin
committed
const kiss_twiddle_scalar *t = &l->trig[0];
for(i=0;i<N4;i++)
kiss_fft_scalar yr, yi;
yr = -S_MUL(*xp2, t[i<<shift]) + S_MUL(*xp1,t[(N4-i)<<shift]);
yi = -S_MUL(*xp2, t[(N4-i)<<shift]) - S_MUL(*xp1,t[i<<shift]);
/* works because the cos is nearly one */
*yp++ = yr - S_MUL(yi,sine);
*yp++ = yi + S_MUL(yr,sine);
xp1+=2*stride;
xp2-=2*stride;
}
/* Inverse N/4 complex FFT. This one should *not* downscale even in fixed-point */
opus_ifft(l->kfft[shift], (kiss_fft_cpx *)f2, (kiss_fft_cpx *)f);
/* Post-rotate */
{
kiss_fft_scalar * restrict fp = f;

Jean-Marc Valin
committed
const kiss_twiddle_scalar *t = &l->trig[0];
for(i=0;i<N4;i++)
{
kiss_fft_scalar re, im, yr, yi;
re = fp[0];
im = fp[1];
/* We'd scale up by 2 here, but instead it's done when mixing the windows */
yr = S_MUL(re,t[i<<shift]) - S_MUL(im,t[(N4-i)<<shift]);
yi = S_MUL(im,t[i<<shift]) + S_MUL(re,t[(N4-i)<<shift]);
/* works because the cos is nearly one */
*fp++ = yr - S_MUL(yi,sine);
*fp++ = yi + S_MUL(yr,sine);
}
/* De-shuffle the components for the middle of the window only */
{
const kiss_fft_scalar * restrict fp1 = f;
const kiss_fft_scalar * restrict fp2 = f+N2-1;

Jean-Marc Valin
committed
kiss_fft_scalar * restrict yp = f2;
for(i = 0; i < N4; i++)
{
*yp++ =-*fp1;
*yp++ = *fp2;
fp1 += 2;
fp2 -= 2;
}
/* Mirror on both sides for TDAC */
{

Jean-Marc Valin
committed
kiss_fft_scalar * restrict fp1 = f2+N4-1;
kiss_fft_scalar * restrict xp1 = out+N2-1;
kiss_fft_scalar * restrict yp1 = out+N4-overlap/2;
const opus_val16 * restrict wp1 = window;
const opus_val16 * restrict wp2 = window+overlap-1;
for(i = 0; i< N4-overlap/2; i++)
{

Jean-Marc Valin
committed
*xp1 = *fp1;
xp1--;

Jean-Marc Valin
committed
fp1--;
}
for(; i < N4; i++)
{
kiss_fft_scalar x1;
x1 = *fp1--;
*yp1++ +=-MULT16_32_Q15(*wp1, x1);
*xp1-- += MULT16_32_Q15(*wp2, x1);
wp1++;
wp2--;
}
}
{
kiss_fft_scalar * restrict fp2 = f2+N4;
kiss_fft_scalar * restrict xp2 = out+N2;
kiss_fft_scalar * restrict yp2 = out+N-1-(N4-overlap/2);
const opus_val16 * restrict wp1 = window;
const opus_val16 * restrict wp2 = window+overlap-1;

Jean-Marc Valin
committed
for(i = 0; i< N4-overlap/2; i++)
{
*xp2 = *fp2;
xp2++;

Jean-Marc Valin
committed
fp2++;
}
for(; i < N4; i++)

Jean-Marc Valin
committed
kiss_fft_scalar x2;
x2 = *fp2++;
*yp2-- = MULT16_32_Q15(*wp1, x2);
*xp2++ = MULT16_32_Q15(*wp2, x2);
wp1++;
wp2--;
RESTORE_STACK;