Newer
Older
/* Copyright (c) 2022 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "float_cast.h"
#include "os_support.h"
int dred_encoder_load_model(DREDEnc* enc, const unsigned char *data, int len)
{
WeightArray *list;
int ret;
parse_weights(&list, data, len);
ret = init_rdovaeenc(&enc->model, list);
free(list);
if (ret == 0) {
ret = lpcnet_encoder_load_model(&enc->lpcnet_enc_state, data, len);
}
if (ret == 0) enc->loaded = 1;
return (ret == 0) ? OPUS_OK : OPUS_BAD_ARG;
}
void dred_encoder_reset(DREDEnc* enc)
OPUS_CLEAR((char*)&enc->DREDENC_RESET_START,
sizeof(DREDEnc)-
((char*)&enc->DREDENC_RESET_START - (char*)enc));
enc->input_buffer_fill = DRED_SILK_ENCODER_DELAY;
lpcnet_encoder_init(&enc->lpcnet_enc_state);
DRED_rdovae_init_encoder(&enc->rdovae_enc);
}
void dred_encoder_init(DREDEnc* enc, opus_int32 Fs, int channels)
{
enc->Fs = Fs;
enc->channels = channels;
if (init_rdovaeenc(&enc->model, rdovaeenc_arrays) == 0) enc->loaded = 1;
static void dred_process_frame(DREDEnc *enc)
float feature_buffer[2 * 36];
float input_buffer[2*DRED_NUM_FEATURES] = {0};
OPUS_MOVE(enc->latents_buffer + DRED_LATENT_DIM, enc->latents_buffer, (DRED_MAX_FRAMES - 1) * DRED_LATENT_DIM);
lpcnet_compute_single_frame_features_float(&enc->lpcnet_enc_state, enc->input_buffer, feature_buffer);
lpcnet_compute_single_frame_features_float(&enc->lpcnet_enc_state, enc->input_buffer + DRED_FRAME_SIZE, feature_buffer + 36);
/* prepare input buffer (discard LPC coefficients) */
OPUS_COPY(input_buffer, feature_buffer, DRED_NUM_FEATURES);
OPUS_COPY(input_buffer + DRED_NUM_FEATURES, feature_buffer + 36, DRED_NUM_FEATURES);
DRED_rdovae_encode_dframe(&enc->rdovae_enc, &enc->model, enc->latents_buffer, enc->state_buffer, input_buffer);
enc->latents_buffer_fill = IMIN(enc->latents_buffer_fill+1, DRED_NUM_REDUNDANCY_FRAMES);
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
void filter_df2t(const float *in, float *out, int len, float b0, const float *b, const float *a, int order, float *mem)
{
int i;
for (i=0;i<len;i++) {
int j;
float xi, yi, nyi;
xi = in[i];
yi = xi*b0 + mem[0];
nyi = -yi;
for (j=0;j<order;j++)
{
mem[j] = mem[j+1] + b[j]*xi + a[j]*nyi;
}
out[i] = yi;
/*fprintf(stdout, "%f\n", out[i]);*/
}
}
#define MAX_DOWNMIX_BUFFER (960*2)
static void dred_convert_to_16k(DREDEnc *enc, const float *in, int in_len, float *out, int out_len)
{
float downmix[MAX_DOWNMIX_BUFFER];
int i;
int up;
celt_assert(enc->channels*in_len <= MAX_DOWNMIX_BUFFER);
celt_assert(in_len * (opus_int32)16000 == out_len * enc->Fs);
switch(enc->Fs) {
case 8000:
up = 2;
break;
case 12000:
up = 4;
break;
case 16000:
up = 1;
break;
case 24000:
up = 2;
break;
case 48000:
up = 1;
break;
default:
celt_assert(0);
}
OPUS_CLEAR(downmix, up*in_len);
if (enc->channels == 1) {
for (i=0;i<in_len;i++) downmix[up*i] = FLOAT2INT16(up*in[i]);
} else {
for (i=0;i<in_len;i++) downmix[up*i] = FLOAT2INT16(.5*up*(in[2*i]+in[2*i+1]));
}
if (enc->Fs == 16000) {
OPUS_COPY(out, downmix, out_len);
} else if (enc->Fs == 48000 || enc->Fs == 24000) {
/* ellip(7, .2, 70, 7750/24000) */
static const float filter_b[8] = { 0.005873358047f, 0.012980854831f, 0.014531340042f, 0.014531340042f, 0.012980854831f, 0.005873358047f, 0.004523418224f, 0.f};
static const float filter_a[8] = {-3.878718597768f, 7.748834257468f, -9.653651699533f, 8.007342726666f, -4.379450178552f, 1.463182111810f, -0.231720677804f, 0.f};
float b0 = 0.004523418224f;
filter_df2t(downmix, downmix, up*in_len, b0, filter_b, filter_a, RESAMPLING_ORDER, enc->resample_mem);
for (i=0;i<out_len;i++) out[i] = downmix[3*i];
} else if (enc->Fs == 12000) {
/* ellip(7, .2, 70, 7750/24000) */
static const float filter_b[8] = {-0.001017101081f, 0.003673127243f, 0.001009165267f, 0.001009165267f, 0.003673127243f, -0.001017101081f, 0.002033596776f, 0.f};
static const float filter_a[8] = {-4.930414411612f, 11.291643096504f, -15.322037343815f, 13.216403930898f, -7.220409219553f, 2.310550142771f, -0.334338618782f, 0.f};
float b0 = 0.002033596776f;
filter_df2t(downmix, downmix, up*in_len, b0, filter_b, filter_a, RESAMPLING_ORDER, enc->resample_mem);
for (i=0;i<out_len;i++) out[i] = downmix[3*i];
} else if (enc->Fs == 8000) {
/* ellip(7, .2, 70, 3900/8000) */
static const float filter_b[8] = { 0.081670120929f, 0.180401598565f, 0.259391051971f, 0.259391051971f, 0.180401598565f, 0.081670120929f, 0.020109185709f, 0.f};
static const float filter_a[8] = {-1.393651933659f, 2.609789872676f, -2.403541968806f, 2.056814957331f, -1.148908574570f, 0.473001413788f, -0.110359852412f, 0.f};
float b0 = 0.020109185709f;
filter_df2t(downmix, out, out_len, b0, filter_b, filter_a, RESAMPLING_ORDER, enc->resample_mem);
} else {
celt_assert(0);
}
}
void dred_compute_latents(DREDEnc *enc, const float *pcm, int frame_size, int extra_delay)
int frame_size16k = frame_size * 16000 / enc->Fs;
curr_offset16k = 40 + extra_delay*16000/enc->Fs - enc->input_buffer_fill;
enc->dred_offset = (int)floor((curr_offset16k+20.f)/40.f);
enc->latent_offset = 0;
while (frame_size16k > 0) {
int process_size16k;
int process_size;
process_size16k = IMIN(2*DRED_FRAME_SIZE, frame_size16k);
process_size = process_size16k * enc->Fs / 16000;
dred_convert_to_16k(enc, pcm, process_size, &enc->input_buffer[enc->input_buffer_fill], process_size16k);
enc->input_buffer_fill += process_size16k;
if (enc->input_buffer_fill >= 2*DRED_FRAME_SIZE)
curr_offset16k += 320;
dred_process_frame(enc);
enc->input_buffer_fill -= 2*DRED_FRAME_SIZE;
OPUS_MOVE(&enc->input_buffer[0], &enc->input_buffer[2*DRED_FRAME_SIZE], enc->input_buffer_fill);
/* 15 ms (6*2.5 ms) is the ideal offset for DRED because it corresponds to our vocoder look-ahead. */
if (enc->dred_offset < 6) {
enc->dred_offset += 8;
OPUS_COPY(enc->initial_state, enc->state_buffer, DRED_STATE_DIM);
} else {
enc->latent_offset++;
}
frame_size16k -= process_size16k;
static void dred_encode_latents(ec_enc *enc, const float *x, const opus_uint16 *scale, const opus_uint16 *dzone, const opus_uint16 *r, const opus_uint16 *p0, int dim) {
int i;
int q[IMAX(DRED_LATENT_DIM,DRED_STATE_DIM)];
float xq[IMAX(DRED_LATENT_DIM,DRED_STATE_DIM)];
float delta[IMAX(DRED_LATENT_DIM,DRED_STATE_DIM)];
float deadzone[IMAX(DRED_LATENT_DIM,DRED_STATE_DIM)];
/* This is split into multiple loops (with temporary arrays) so that the compiler
can vectorize all of it, and so we can call the vector tanh(). */
for (i=0;i<dim;i++) {
delta[i] = dzone[i]*(1.f/1024.f);
xq[i] = x[i]*scale[i]*(1.f/256.f);
deadzone[i] = xq[i]/(delta[i]+eps);
}
compute_activation(deadzone, deadzone, dim, ACTIVATION_TANH);
for (i=0;i<dim;i++) {
xq[i] = xq[i] - delta[i]*deadzone[i];
q[i] = (int)floor(.5f+xq[i]);
}
for (i=0;i<dim;i++) {
/* Make the impossible actually impossible. */
if (r[i] == 0 || p0[i] >= 32767) q[i] = 0;
ec_laplace_encode_p0(enc, q[i], p0[i], r[i]);
int dred_encode_silk_frame(const DREDEnc *enc, unsigned char *buf, int max_chunks, int max_bytes) {
const opus_uint16 *dead_zone = DRED_rdovae_get_dead_zone_pointer();
const opus_uint16 *p0 = DRED_rdovae_get_p0_pointer();
const opus_uint16 *quant_scales = DRED_rdovae_get_quant_scales_pointer();
const opus_uint16 *r = DRED_rdovae_get_r_pointer();
ec_enc ec_encoder;
int q_level;
int i;
int offset;
int ec_buffer_fill;
/* entropy coding of state and latents */
q0 = DRED_ENC_Q0;
dQ = 3;
ec_enc_uint(&ec_encoder, enc->dred_offset, 32);
ec_enc_uint(&ec_encoder, q0, 16);
ec_enc_uint(&ec_encoder, dQ, 8);
state_qoffset = q0*(DRED_LATENT_DIM+DRED_STATE_DIM) + DRED_LATENT_DIM;
dred_encode_latents(
&ec_encoder,
enc->initial_state,
quant_scales + state_qoffset,
dead_zone + state_qoffset,
r + state_qoffset,
if (ec_tell(&ec_encoder) > 8*max_bytes) {
return 0;
}
for (i = 0; i < IMIN(2*max_chunks, enc->latents_buffer_fill-enc->latent_offset-1); i += 2)
ec_enc ec_bak;
ec_bak = ec_encoder;
q_level = compute_quantizer(q0, dQ, i/2);
offset = q_level * (DRED_LATENT_DIM+DRED_STATE_DIM);
enc->latents_buffer + (i+enc->latent_offset) * DRED_LATENT_DIM,
quant_scales + offset,
dead_zone + offset,
r + offset,
if (ec_tell(&ec_encoder) > 8*max_bytes) {
ec_encoder = ec_bak;
/* If we haven't been able to code one chunk, give up on DRED completely. */
if (i==0) return 0;
ec_buffer_fill = (ec_tell(&ec_encoder)+7)/8;
ec_enc_shrink(&ec_encoder, ec_buffer_fill);
ec_enc_done(&ec_encoder);