-
Jean-Marc Valin authoredJean-Marc Valin authored
nnet.c 14.95 KiB
/* Copyright (c) 2018 Mozilla
2008-2011 Octasic Inc.
2012-2017 Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdlib.h>
#include <math.h>
#include "opus_types.h"
#include "arch.h"
#include "tansig_table.h"
#include "nnet.h"
#include "nnet_data.h"
#include "dred_rdovae_constants.h"
#include "plc_data.h"
#include "os_support.h"
#ifdef NO_OPTIMIZATIONS
#if defined(_MSC_VER)
#pragma message ("Compiling without any vectorization. This code will be very slow")
#else
#warning Compiling without any vectorization. This code will be very slow
#endif
#endif
#define SOFTMAX_HACK
#define MAX_ACTIVATIONS (4096)
static OPUS_INLINE void vec_swish(float *y, const float *x, int N)
{
int i;
float tmp[MAX_ACTIVATIONS];
celt_assert(N <= MAX_ACTIVATIONS);
vec_sigmoid(tmp, x, N);
for (i=0;i<N;i++)
y[i] = x[i]*tmp[i];
}
static OPUS_INLINE float relu(float x)
{
return x < 0 ? 0 : x;
}
void compute_linear(const LinearLayer *linear, float *out, const float *in)
{
int i, M, N;
const float *bias;
celt_assert(in != out);
bias = linear->bias;
M = linear->nb_inputs;
N = linear->nb_outputs;
if (linear->float_weights != NULL) {
if (linear->weights_idx != NULL) sparse_sgemv8x4(out, linear->float_weights, linear->weights_idx, N, in);
else sgemv(out, linear->float_weights, N, M, N, in);
} else if (linear->weights != NULL) {
if (linear->weights_idx != NULL) sparse_cgemv8x4(out, linear->weights, linear->weights_idx, linear->scale, N, M, in);
else cgemv8x4(out, linear->weights, linear->scale, N, M, in);
/* Only use SU biases on for integer matrices on SU archs. */
#ifdef USE_SU_BIAS
bias = linear->subias;
#endif
}
else OPUS_CLEAR(out, N);
if (bias != NULL) {
for (i=0;i<N;i++) out[i] += bias[i];
}
if (linear->diag) {
/* Diag is only used for GRU recurrent weights. */
celt_assert(3*M == N);
for (i=0;i<M;i++) {
out[i] += linear->diag[i]*in[i];
out[i+M] += linear->diag[i+M]*in[i];
out[i+2*M] += linear->diag[i+2*M]*in[i];
}
}
}
void compute_generic_dense(const LinearLayer *layer, float *output, const float *input, int activation)
{
compute_linear(layer, output, input);
compute_activation(output, output, layer->nb_outputs, activation);
}
#define MAX_RNN_NEURONS_ALL IMAX(IMAX(MAX_RNN_NEURONS, PLC_MAX_RNN_NEURONS), DRED_MAX_RNN_NEURONS)
void compute_generic_gru(const LinearLayer *input_weights, const LinearLayer *recurrent_weights, float *state, const float *in)
{
int i;
int N;
float zrh[3*MAX_RNN_NEURONS_ALL];
float recur[3*MAX_RNN_NEURONS_ALL];
float *z;
float *r;
float *h;
celt_assert(3*recurrent_weights->nb_inputs == recurrent_weights->nb_outputs);
celt_assert(input_weights->nb_outputs == recurrent_weights->nb_outputs);
N = recurrent_weights->nb_inputs;
z = zrh;
r = &zrh[N];
h = &zrh[2*N];
celt_assert(recurrent_weights->nb_outputs <= 3*MAX_RNN_NEURONS_ALL);
celt_assert(in != state);
compute_linear(input_weights, zrh, in);
compute_linear(recurrent_weights, recur, state);
for (i=0;i<2*N;i++)
zrh[i] += recur[i];
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
for (i=0;i<N;i++)
h[i] += recur[2*N+i]*r[i];
compute_activation(h, h, N, ACTIVATION_TANH);
for (i=0;i<N;i++)
h[i] = z[i]*state[i] + (1-z[i])*h[i];
for (i=0;i<N;i++)
state[i] = h[i];
}
void compute_glu(const LinearLayer *layer, float *output, const float *input)
{
int i;
float act2[MAX_INPUTS];
celt_assert(layer->nb_inputs == layer->nb_outputs);
compute_linear(layer, act2, input);
compute_activation(act2, act2, layer->nb_outputs, ACTIVATION_SIGMOID);
if (input == output) {
/* Give a vectorization hint to the compiler for the in-place case. */
for (i=0;i<layer->nb_outputs;i++) output[i] = output[i]*act2[i];
} else {
for (i=0;i<layer->nb_outputs;i++) output[i] = input[i]*act2[i];
}
}
void compute_gated_activation(const LinearLayer *layer, float *output, const float *input, int activation)
{
int i;
float act1[MAX_INPUTS];
float act2[MAX_INPUTS];
celt_assert(layer->nb_inputs == layer->nb_outputs);
compute_activation(act1, input, layer->nb_outputs, activation);
compute_linear(layer, act2, input);
compute_activation(act2, act2, layer->nb_outputs, ACTIVATION_SIGMOID);
for (i=0;i<layer->nb_outputs;i++) output[i] = act1[i]*act2[i];
}
void compute_activation(float *output, const float *input, int N, int activation)
{
int i;
if (activation == ACTIVATION_SIGMOID) {
vec_sigmoid(output, input, N);
} else if (activation == ACTIVATION_TANH) {
vec_tanh(output, input, N);
} else if (activation == ACTIVATION_SWISH) {
vec_swish(output, input, N);
} else if (activation == ACTIVATION_RELU) {
for (i=0;i<N;i++)
output[i] = relu(input[i]);
} else if (activation == ACTIVATION_SOFTMAX) {
#ifdef SOFTMAX_HACK
OPUS_COPY(output, input, N);
/*for (i=0;i<N;i++)
output[i] = input[i];*/
#else
float sum = 0;
softmax(output, input, N);
for (i=0;i<N;i++) {
sum += output[i];
}
sum = 1.f/(sum+1e-30);
for (i=0;i<N;i++)
output[i] = sum*output[i];
#endif
} else {
celt_assert(activation == ACTIVATION_LINEAR);
if (input != output) {
for (i=0;i<N;i++)
output[i] = input[i];
}
}
}
void _lpcnet_compute_dense(const DenseLayer *layer, float *output, const float *input)
{
LinearLayer matrix;
celt_assert(input != output);
matrix.bias = layer->bias;
matrix.subias = NULL;
matrix.float_weights = layer->input_weights;
matrix.weights = NULL;
matrix.weights_idx = NULL;
matrix.diag = NULL;
matrix.nb_inputs = layer->nb_inputs;
matrix.nb_outputs = layer->nb_neurons;
matrix.scale = NULL;
compute_linear(&matrix, output, input);
compute_activation(output, output, layer->nb_neurons, layer->activation);
}
#ifdef USE_SU_BIAS
#define bias_type subias
#else
#define bias_type bias
#endif
#define MAX_IDX_SIZE 8192
void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input)
{
LinearLayer in_matrix, rec_matrix;
int i, M, N;
float bias[3*MAX_RNN_NEURONS_ALL];
float scale[3*MAX_RNN_NEURONS_ALL];
M = gru->nb_inputs;
N = gru->nb_neurons;
in_matrix.bias = bias;
in_matrix.diag = NULL;
in_matrix.nb_inputs = M;
in_matrix.nb_outputs = 3*N;
in_matrix.subias = bias;
#ifdef DISABLE_DOT_PROD
for (i=0;i<3*N;i++) bias[i] = gru->bias[i] + gru_b_condition[i];
in_matrix.scale = NULL;
in_matrix.float_weights = gru->input_weights;
in_matrix.weights = NULL;
#else
for (i=0;i<3*N;i++) bias[i] = gru->bias_type[i] + gru_b_condition[i];
for (i=0;i<3*N;i++) scale[i] = SCALE_1;
in_matrix.scale = scale;
in_matrix.weights = gru->input_weights;
in_matrix.float_weights = NULL;
#endif
in_matrix.weights_idx = gru->input_weights_idx;
rec_matrix.bias = &gru->bias[3*N];
rec_matrix.diag = NULL;
rec_matrix.nb_inputs = N;
rec_matrix.nb_outputs = 3*N;
rec_matrix.scale = scale;
rec_matrix.subias = &gru->subias[3*N];
#ifdef DISABLE_DOT_PROD
rec_matrix.scale = NULL;
rec_matrix.float_weights = gru->recurrent_weights;
rec_matrix.weights = NULL;
#else
rec_matrix.scale = scale;
rec_matrix.weights = gru->recurrent_weights;
rec_matrix.float_weights = NULL;
#endif
rec_matrix.weights_idx = NULL;
compute_generic_gru(&in_matrix, &rec_matrix, state, input);
}
/* The input of this GRU is after the input matrix multiply. */
void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input)
{
LinearLayer in_matrix, rec_matrix;
int i, N;
float scale[3*MAX_RNN_NEURONS_ALL];
N = gru->nb_neurons;
in_matrix.bias = input;
in_matrix.diag = NULL;
in_matrix.nb_inputs = N;
in_matrix.nb_outputs = 3*N;
in_matrix.subias = input;
in_matrix.scale = NULL;
in_matrix.float_weights = NULL;
in_matrix.weights = NULL;
in_matrix.weights_idx = NULL;
rec_matrix.bias = &gru->bias[3*N];
rec_matrix.diag = gru->diag_weights;
rec_matrix.nb_inputs = N;
rec_matrix.nb_outputs = 3*N;
rec_matrix.subias = &gru->subias[3*N];
#ifdef DISABLE_DOT_PROD
rec_matrix.scale = NULL;
rec_matrix.float_weights = gru->recurrent_weights;
rec_matrix.weights = NULL;
#else
for (i=0;i<3*N;i++) scale[i] = SCALE_1;
rec_matrix.scale = scale;
rec_matrix.weights = gru->recurrent_weights;
rec_matrix.float_weights = NULL;
#endif
rec_matrix.weights_idx = gru->idx;
compute_generic_gru(&in_matrix, &rec_matrix, state, input);
}
#define MAX_CONV_INPUTS_ALL IMAX(MAX_CONV_INPUTS, DRED_MAX_CONV_INPUTS)
void compute_generic_conv1d(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int activation)
{
float tmp[MAX_CONV_INPUTS_ALL];
celt_assert(input != output);
celt_assert(layer->nb_inputs <= MAX_CONV_INPUTS_ALL);
OPUS_COPY(tmp, mem, layer->nb_inputs-input_size);
OPUS_COPY(&tmp[layer->nb_inputs-input_size], input, input_size);
compute_linear(layer, output, tmp);
compute_activation(output, output, layer->nb_outputs, activation);
OPUS_COPY(mem, &tmp[input_size], layer->nb_inputs-input_size);
}
void compute_generic_conv1d_dilation(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int dilation, int activation)
{
float tmp[MAX_CONV_INPUTS_ALL];
int ksize = layer->nb_inputs/input_size;
int i;
celt_assert(input != output);
celt_assert(layer->nb_inputs <= MAX_CONV_INPUTS_ALL);
if (dilation==1) OPUS_COPY(tmp, mem, layer->nb_inputs-input_size);
else for (i=0;i<ksize-1;i++) OPUS_COPY(&tmp[i*input_size], &mem[i*input_size*dilation], input_size);
OPUS_COPY(&tmp[layer->nb_inputs-input_size], input, input_size);
compute_linear(layer, output, tmp);
compute_activation(output, output, layer->nb_outputs, activation);
if (dilation==1) OPUS_COPY(mem, &tmp[input_size], layer->nb_inputs-input_size);
else {
OPUS_COPY(mem, &mem[input_size], input_size*dilation*(ksize-1)-input_size);
OPUS_COPY(&mem[input_size*dilation*(ksize-1)-input_size], input, input_size);
}
}
void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input)
{
LinearLayer matrix;
int N, M;
M = layer->nb_inputs*layer->kernel_size;
N = layer->nb_neurons;
matrix.bias = layer->bias;
matrix.subias = NULL;
matrix.float_weights = layer->input_weights;
matrix.weights = NULL;
matrix.weights_idx = NULL;
matrix.diag = NULL;
matrix.nb_inputs = M;
matrix.nb_outputs = N;
matrix.scale = NULL;
compute_generic_conv1d(&matrix, output, mem, input, layer->nb_inputs, layer->activation);
}
/* Computes non-padded convolution for input [ ksize1 x in_channels x (len2+ksize2) ],
kernel [ out_channels x in_channels x ksize1 x ksize2 ],
storing the output as [ out_channels x len2 ].
We assume that the output dimension along the ksize1 axis is 1,
i.e. processing one frame at a time. */
void conv2d_float(float *out, const float *weights, int in_channels, int out_channels, int ktime, int kheight, const float *in, int height, int hstride)
{
int i;
int in_stride;
in_stride = height+kheight-1;
for (i=0;i<out_channels;i++) {
int m;
OPUS_CLEAR(&out[i*hstride], height);
for (m=0;m<in_channels;m++) {
int t;
for (t=0;t<ktime;t++) {
int h;
for (h=0;h<kheight;h++) {
int j;
for (j=0;j<height;j++) {
out[i*hstride + j] += weights[i*in_channels*ktime*kheight + m*ktime*kheight + t*kheight + h] *
in[t*in_channels*in_stride + m*in_stride + j + h];
}
}
}
}
}
}
#define MAX_CONV2D_INPUTS 8192
void compute_conv2d(const Conv2dLayer *conv, float *out, float *mem, const float *in, int height, int hstride, int activation)
{
int i;
const float *bias;
float in_buf[MAX_CONV2D_INPUTS];
int time_stride;
celt_assert(in != out);
time_stride = conv->in_channels*(height+conv->kheight-1);
celt_assert(conv->ktime*time_stride <= MAX_CONV2D_INPUTS);
OPUS_COPY(in_buf, mem, (conv->ktime-1)*time_stride);
OPUS_COPY(&in_buf[(conv->ktime-1)*time_stride], in, time_stride);
OPUS_COPY(mem, &in_buf[time_stride], (conv->ktime-1)*time_stride);
bias = conv->bias;
conv2d_float(out, conv->float_weights, conv->in_channels, conv->out_channels, conv->ktime, conv->kheight, in_buf, height, hstride);
if (bias != NULL) {
for (i=0;i<conv->out_channels;i++) {
int j;
for (j=0;j<height;j++) out[i*hstride+j] += bias[i];
}
}
for (i=0;i<conv->out_channels;i++) {
compute_activation(&out[i*hstride], &out[i*hstride], height, activation);
}
}
void compute_embedding(const EmbeddingLayer *layer, float *output, int input)
{
int i;
celt_assert(input >= 0);
celt_assert(input < layer->nb_inputs);
/*if (layer->dim == 64) printf("%d\n", input);*/
for (i=0;i<layer->dim;i++)
{
output[i] = layer->embedding_weights[input*layer->dim + i];
}
}
void compute_gru_a_input(float *output, const float *input, int N, const EmbeddingLayer *layer1, int val1, const EmbeddingLayer *layer2, int val2, const EmbeddingLayer *layer3, int val3) {
int i;
for (i=0;i<3*N;i++) {
output[i] = input[i] + layer1->embedding_weights[val1*layer1->dim + i]
+ layer2->embedding_weights[val2*layer2->dim + i]
+ layer3->embedding_weights[val3*layer3->dim + i];
}
}
void accum_embedding(const EmbeddingLayer *layer, float *output, int input)
{
int i;
celt_assert(input >= 0);
celt_assert(input < layer->nb_inputs);
/*if (layer->dim == 64) printf("%d\n", input);*/
for (i=0;i<layer->dim;i++)
{
output[i] += layer->embedding_weights[input*layer->dim + i];
}
}