Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
Opus
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Xiph.Org
Opus
Commits
6a9831a6
Unverified
Commit
6a9831a6
authored
1 year ago
by
Jean-Marc Valin
Browse files
Options
Downloads
Patches
Plain Diff
Remove run-time code for old TF2 models
No longer needed now that PLC is trained with PyTorch stack
parent
1ddfcfd4
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Pipeline
#5064
passed
1 year ago
Stage: build
Stage: test
Changes
3
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
dnn/nnet.c
+0
-72
0 additions, 72 deletions
dnn/nnet.c
dnn/nnet.h
+0
-63
0 additions, 63 deletions
dnn/nnet.h
dnn/parse_lpcnet_weights.c
+0
-40
0 additions, 40 deletions
dnn/parse_lpcnet_weights.c
with
0 additions
and
175 deletions
dnn/nnet.c
+
0
−
72
View file @
6a9831a6
...
@@ -115,78 +115,6 @@ void compute_glu(const LinearLayer *layer, float *output, const float *input, in
...
@@ -115,78 +115,6 @@ void compute_glu(const LinearLayer *layer, float *output, const float *input, in
}
}
}
}
void
_lpcnet_compute_dense
(
const
DenseLayer
*
layer
,
float
*
output
,
const
float
*
input
,
int
arch
)
{
LinearLayer
matrix
;
celt_assert
(
input
!=
output
);
matrix
.
bias
=
layer
->
bias
;
matrix
.
subias
=
NULL
;
matrix
.
float_weights
=
layer
->
input_weights
;
matrix
.
weights
=
NULL
;
matrix
.
weights_idx
=
NULL
;
matrix
.
diag
=
NULL
;
matrix
.
nb_inputs
=
layer
->
nb_inputs
;
matrix
.
nb_outputs
=
layer
->
nb_neurons
;
matrix
.
scale
=
NULL
;
compute_linear
(
&
matrix
,
output
,
input
,
arch
);
compute_activation
(
output
,
output
,
layer
->
nb_neurons
,
layer
->
activation
,
arch
);
}
#ifdef USE_SU_BIAS
#define bias_type subias
#else
#define bias_type bias
#endif
#define MAX_IDX_SIZE 8192
void
compute_gruB
(
const
GRULayer
*
gru
,
const
float
*
gru_b_condition
,
float
*
state
,
const
float
*
input
,
int
arch
)
{
LinearLayer
in_matrix
,
rec_matrix
;
int
i
,
M
,
N
;
float
bias
[
3
*
MAX_RNN_NEURONS_ALL
];
float
scale
[
3
*
MAX_RNN_NEURONS_ALL
];
M
=
gru
->
nb_inputs
;
N
=
gru
->
nb_neurons
;
in_matrix
.
bias
=
bias
;
in_matrix
.
diag
=
NULL
;
in_matrix
.
nb_inputs
=
M
;
in_matrix
.
nb_outputs
=
3
*
N
;
in_matrix
.
subias
=
bias
;
#ifdef DISABLE_DOT_PROD
for
(
i
=
0
;
i
<
3
*
N
;
i
++
)
bias
[
i
]
=
gru
->
bias
[
i
]
+
gru_b_condition
[
i
];
in_matrix
.
scale
=
NULL
;
in_matrix
.
float_weights
=
gru
->
input_weights
;
in_matrix
.
weights
=
NULL
;
#else
for
(
i
=
0
;
i
<
3
*
N
;
i
++
)
bias
[
i
]
=
gru
->
bias_type
[
i
]
+
gru_b_condition
[
i
];
for
(
i
=
0
;
i
<
3
*
N
;
i
++
)
scale
[
i
]
=
SCALE_1
;
in_matrix
.
scale
=
scale
;
in_matrix
.
weights
=
gru
->
input_weights
;
in_matrix
.
float_weights
=
NULL
;
#endif
in_matrix
.
weights_idx
=
gru
->
input_weights_idx
;
rec_matrix
.
bias
=
&
gru
->
bias
[
3
*
N
];
rec_matrix
.
diag
=
NULL
;
rec_matrix
.
nb_inputs
=
N
;
rec_matrix
.
nb_outputs
=
3
*
N
;
rec_matrix
.
scale
=
scale
;
rec_matrix
.
subias
=
&
gru
->
subias
[
3
*
N
];
#ifdef DISABLE_DOT_PROD
rec_matrix
.
scale
=
NULL
;
rec_matrix
.
float_weights
=
gru
->
recurrent_weights
;
rec_matrix
.
weights
=
NULL
;
#else
rec_matrix
.
scale
=
scale
;
rec_matrix
.
weights
=
gru
->
recurrent_weights
;
rec_matrix
.
float_weights
=
NULL
;
#endif
rec_matrix
.
weights_idx
=
NULL
;
compute_generic_gru
(
&
in_matrix
,
&
rec_matrix
,
state
,
input
,
arch
);
}
#define MAX_CONV_INPUTS_ALL DRED_MAX_CONV_INPUTS
#define MAX_CONV_INPUTS_ALL DRED_MAX_CONV_INPUTS
void
compute_generic_conv1d
(
const
LinearLayer
*
layer
,
float
*
output
,
float
*
mem
,
const
float
*
input
,
int
input_size
,
int
activation
,
int
arch
)
void
compute_generic_conv1d
(
const
LinearLayer
*
layer
,
float
*
output
,
float
*
mem
,
const
float
*
input
,
int
input_size
,
int
activation
,
int
arch
)
...
...
This diff is collapsed.
Click to expand it.
dnn/nnet.h
+
0
−
63
View file @
6a9831a6
...
@@ -31,13 +31,6 @@
...
@@ -31,13 +31,6 @@
#include
<stddef.h>
#include
<stddef.h>
#include
"opus_types.h"
#include
"opus_types.h"
#ifdef DISABLE_DOT_PROD
typedef
float
qweight
;
#else
typedef
signed
char
qweight
;
#define DOT_PROD
#endif
#define ACTIVATION_LINEAR 0
#define ACTIVATION_LINEAR 0
#define ACTIVATION_SIGMOID 1
#define ACTIVATION_SIGMOID 1
#define ACTIVATION_TANH 2
#define ACTIVATION_TANH 2
...
@@ -91,40 +84,6 @@ typedef struct {
...
@@ -91,40 +84,6 @@ typedef struct {
int
kheight
;
int
kheight
;
}
Conv2dLayer
;
}
Conv2dLayer
;
typedef
struct
{
const
float
*
bias
;
const
float
*
input_weights
;
int
nb_inputs
;
int
nb_neurons
;
int
activation
;
}
DenseLayer
;
typedef
struct
{
const
float
*
bias
;
const
float
*
subias
;
const
qweight
*
input_weights
;
const
int
*
input_weights_idx
;
const
qweight
*
recurrent_weights
;
int
nb_inputs
;
int
nb_neurons
;
int
activation
;
int
reset_after
;
}
GRULayer
;
typedef
struct
{
const
float
*
bias
;
const
float
*
input_weights
;
int
nb_inputs
;
int
kernel_size
;
int
nb_neurons
;
int
activation
;
}
Conv1DLayer
;
typedef
struct
{
const
float
*
embedding_weights
;
int
nb_inputs
;
int
dim
;
}
EmbeddingLayer
;
void
compute_generic_dense
(
const
LinearLayer
*
layer
,
float
*
output
,
const
float
*
input
,
int
activation
,
int
arch
);
void
compute_generic_dense
(
const
LinearLayer
*
layer
,
float
*
output
,
const
float
*
input
,
int
activation
,
int
arch
);
void
compute_generic_gru
(
const
LinearLayer
*
input_weights
,
const
LinearLayer
*
recurrent_weights
,
float
*
state
,
const
float
*
in
,
int
arch
);
void
compute_generic_gru
(
const
LinearLayer
*
input_weights
,
const
LinearLayer
*
recurrent_weights
,
float
*
state
,
const
float
*
in
,
int
arch
);
...
@@ -134,10 +93,6 @@ void compute_glu(const LinearLayer *layer, float *output, const float *input, in
...
@@ -134,10 +93,6 @@ void compute_glu(const LinearLayer *layer, float *output, const float *input, in
void
compute_gated_activation
(
const
LinearLayer
*
layer
,
float
*
output
,
const
float
*
input
,
int
activation
,
int
arch
);
void
compute_gated_activation
(
const
LinearLayer
*
layer
,
float
*
output
,
const
float
*
input
,
int
activation
,
int
arch
);
void
_lpcnet_compute_dense
(
const
DenseLayer
*
layer
,
float
*
output
,
const
float
*
input
,
int
arch
);
void
compute_gruB
(
const
GRULayer
*
gru
,
const
float
*
gru_b_condition
,
float
*
state
,
const
float
*
input
,
int
arch
);
int
parse_weights
(
WeightArray
**
list
,
const
unsigned
char
*
data
,
int
len
);
int
parse_weights
(
WeightArray
**
list
,
const
unsigned
char
*
data
,
int
len
);
...
@@ -169,24 +124,6 @@ int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
...
@@ -169,24 +124,6 @@ int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
int
ktime
,
int
ktime
,
int
kheight
);
int
kheight
);
int
dense_init
(
DenseLayer
*
layer
,
const
WeightArray
*
arrays
,
const
char
*
bias
,
const
char
*
input_weights
,
int
nb_inputs
,
int
nb_neurons
,
int
activation
);
int
gru_init
(
GRULayer
*
layer
,
const
WeightArray
*
arrays
,
const
char
*
bias
,
const
char
*
subias
,
const
char
*
input_weights
,
const
char
*
input_weights_idx
,
const
char
*
recurrent_weights
,
int
nb_inputs
,
int
nb_neurons
,
int
activation
,
int
reset_after
);
void
compute_linear_c
(
const
LinearLayer
*
linear
,
float
*
out
,
const
float
*
in
);
void
compute_linear_c
(
const
LinearLayer
*
linear
,
float
*
out
,
const
float
*
in
);
void
compute_activation_c
(
float
*
output
,
const
float
*
input
,
int
N
,
int
activation
);
void
compute_activation_c
(
float
*
output
,
const
float
*
input
,
int
N
,
int
activation
);
...
...
This diff is collapsed.
Click to expand it.
dnn/parse_lpcnet_weights.c
+
0
−
40
View file @
6a9831a6
...
@@ -176,46 +176,6 @@ int linear_init(LinearLayer *layer, const WeightArray *arrays,
...
@@ -176,46 +176,6 @@ int linear_init(LinearLayer *layer, const WeightArray *arrays,
return
0
;
return
0
;
}
}
int
dense_init
(
DenseLayer
*
layer
,
const
WeightArray
*
arrays
,
const
char
*
bias
,
const
char
*
input_weights
,
int
nb_inputs
,
int
nb_neurons
,
int
activation
)
{
if
((
layer
->
bias
=
find_array_check
(
arrays
,
bias
,
nb_neurons
*
sizeof
(
layer
->
bias
[
0
])))
==
NULL
)
return
1
;
if
((
layer
->
input_weights
=
find_array_check
(
arrays
,
input_weights
,
nb_inputs
*
nb_neurons
*
sizeof
(
layer
->
input_weights
[
0
])))
==
NULL
)
return
1
;
layer
->
nb_inputs
=
nb_inputs
;
layer
->
nb_neurons
=
nb_neurons
;
layer
->
activation
=
activation
;
return
0
;
}
int
gru_init
(
GRULayer
*
layer
,
const
WeightArray
*
arrays
,
const
char
*
bias
,
const
char
*
subias
,
const
char
*
input_weights
,
const
char
*
input_weights_idx
,
const
char
*
recurrent_weights
,
int
nb_inputs
,
int
nb_neurons
,
int
activation
,
int
reset_after
)
{
int
total_blocks
;
if
((
layer
->
bias
=
find_array_check
(
arrays
,
bias
,
6
*
nb_neurons
*
sizeof
(
layer
->
bias
[
0
])))
==
NULL
)
return
1
;
if
((
layer
->
subias
=
find_array_check
(
arrays
,
subias
,
6
*
nb_neurons
*
sizeof
(
layer
->
subias
[
0
])))
==
NULL
)
return
1
;
if
((
layer
->
input_weights_idx
=
find_idx_check
(
arrays
,
input_weights_idx
,
nb_inputs
,
3
*
nb_neurons
,
&
total_blocks
))
==
NULL
)
return
1
;
if
((
layer
->
input_weights
=
find_array_check
(
arrays
,
input_weights
,
SPARSE_BLOCK_SIZE
*
total_blocks
*
sizeof
(
layer
->
input_weights
[
0
])))
==
NULL
)
return
1
;
if
((
layer
->
recurrent_weights
=
find_array_check
(
arrays
,
recurrent_weights
,
3
*
nb_neurons
*
nb_neurons
*
sizeof
(
layer
->
recurrent_weights
[
0
])))
==
NULL
)
return
1
;
layer
->
nb_inputs
=
nb_inputs
;
layer
->
nb_neurons
=
nb_neurons
;
layer
->
activation
=
activation
;
layer
->
reset_after
=
reset_after
;
return
0
;
}
int
conv2d_init
(
Conv2dLayer
*
layer
,
const
WeightArray
*
arrays
,
int
conv2d_init
(
Conv2dLayer
*
layer
,
const
WeightArray
*
arrays
,
const
char
*
bias
,
const
char
*
bias
,
const
char
*
float_weights
,
const
char
*
float_weights
,
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment