Skip to content
Snippets Groups Projects
Verified Commit a6b4fe37 authored by Jean-Marc Valin's avatar Jean-Marc Valin
Browse files

Script to compute the groundtruth data using CREPE

parent 217c40d4
No related branches found
No related tags found
No related merge requests found
"""
Perform Data Augmentation (Gain, Additive Noise, Random Filtering) on Input TTS Data
1. Read in chunks and compute clean pitch first
2. Then add in augmentation (Noise/Level/Response)
- Adds filtered noise from the "Demand" dataset, https://zenodo.org/record/1227121#.XRKKxYhKiUk
- When using the Demand Dataset, consider each channel as a possible noise input, and keep the first 4 minutes of noise for training
3. Use this "augmented" audio for feature computation, and compute pitch using CREPE on the clean input
Notes: To ensure consistency with the discovered CREPE offset, we do the following
- We pad the input audio to the zero-centered CREPE estimator with 80 zeros
- We pad the input audio to our feature computation with 160 zeros to center them
"""
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('data', type=str, help='input raw audio data')
parser.add_argument('output', type=str, help='output directory')
parser.add_argument('--gpu-index', type=int, help='GPU index to use if multiple GPUs',default = 0,required = False)
parser.add_argument('--chunk-size-frames', type=int, help='Number of frames to process at a time',default = 100000,required = False)
args = parser.parse_args()
import os
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_index)
import numpy as np
import tqdm
import crepe
data = np.memmap(args.data, dtype=np.int16,mode = 'r')
# list_features = []
list_cents = []
list_confidences = []
min_period = 32
max_period = 256
f_ref = 16000/max_period
chunk_size_frames = args.chunk_size_frames
chunk_size = chunk_size_frames*160
nb_chunks = (data.shape[0]+79)//chunk_size+1
output_data = np.zeros((0,2),dtype='float32')
for i in tqdm.trange(nb_chunks):
if i==0:
chunk = np.concatenate([np.zeros(80),data[:chunk_size-80]])
elif i==nb_chunks-1:
chunk = data[i*chunk_size-80:]
else:
chunk = data[i*chunk_size-80:(i+1)*chunk_size-80]
chunk = chunk/np.array(32767.,dtype='float32')
# Clean Pitch/Confidence Estimate
# Padding input to CREPE by 80 samples to ensure it aligns
_, pitch, confidence, _ = crepe.predict(chunk, 16000, center=True, viterbi=True,verbose=0)
pitch = pitch[:chunk_size_frames]
confidence = confidence[:chunk_size_frames]
# Filter out of range pitches/confidences
confidence[pitch < 16000/max_period] = 0
confidence[pitch > 16000/min_period] = 0
pitch = np.reshape(pitch, (-1, 1))
confidence = np.reshape(confidence, (-1, 1))
out = np.concatenate([pitch, confidence], axis=-1, dtype='float32')
output_data = np.concatenate([output_data, out], axis=0)
output_data.tofile(args.output)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment