group1.add_argument('--retrain',metavar='<input weights>',help='continue training model')
parser.add_argument('--density',metavar='<global density>',type=float,help='average density of the recurrent weights (default 0.1)')
parser.add_argument('--density-split',nargs=3,metavar=('<update>','<reset>','<state>'),type=float,help='density of each recurrent gate (default 0.05, 0.05, 0.2)')
parser.add_argument('--grub-density',metavar='<global GRU B density>',type=float,help='average density of the recurrent weights (default 1.0)')
...
...
@@ -45,6 +47,10 @@ parser.add_argument('--grub-size', metavar='<units>', default=16, type=int, help
parser.add_argument('--epochs',metavar='<epochs>',default=120,type=int,help='number of epochs to train for (default 120)')
parser.add_argument('--batch-size',metavar='<batch size>',default=128,type=int,help='batch size to use (default 128)')
parser.add_argument('--end2end',dest='flag_e2e',action='store_true',help='Enable end-to-end training (with differentiable LPC computation')