Skip to content
Snippets Groups Projects
Commit cc714cc5 authored by Jean-Marc Valin's avatar Jean-Marc Valin
Browse files

binary weights work in progress

parent 1074e5f0
No related branches found
No related tags found
No related merge requests found
......@@ -38,6 +38,29 @@
#define ACTIVATION_SOFTMAX 4
#define ACTIVATION_SWISH 5
#define WEIGHT_BLOB_VERSION 0
#define WEIGHT_BLOCK_SIZE 64
typedef struct {
const char *name;
int type;
int size;
const void *data;
} WeightArray;
#define WEIGHT_TYPE_float 0
#define WEIGHT_TYPE_int 1
#define WEIGHT_TYPE_qweight 2
typedef struct {
char head[4];
int version;
int type;
int size;
int block_size;
char name[44];
} WeightHead;
typedef struct {
const float *bias;
const float *input_weights;
......
/* Copyright (c) 2023 Amazon */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "nnet.h"
extern const WeightArray lpcnet_arrays[];
int parse_record(const unsigned char **data, int *len, WeightArray *array) {
if (*len < WEIGHT_BLOCK_SIZE) return -1;
WeightHead *h = (WeightHead *)*data;
if (h->block_size < h->size) return -1;
if (*len < h->block_size+WEIGHT_BLOCK_SIZE) return -1;
if (h->name[sizeof(h->name)-1] != 0) return -1;
if (h->size < 0) return -1;
array->name = h->name;
array->type = h->type;
array->size = h->size;
array->data = (*data)+WEIGHT_BLOCK_SIZE;
*data += h->block_size+WEIGHT_BLOCK_SIZE;
*len -= h->block_size+WEIGHT_BLOCK_SIZE;
return array->size;
}
int parse_weights(WeightArray **list, const unsigned char *data, int len)
{
int nb_arrays=0;
int capacity=20;
*list = malloc(capacity*sizeof(WeightArray));
while (len > 0) {
int ret;
WeightArray array = {NULL, 0, 0, 0};
ret = parse_record(&data, &len, &array);
if (ret > 0) {
if (nb_arrays+1 >= capacity) {
/* Make sure there's room for the ending NULL element too. */
capacity = capacity*3/2;
*list = realloc(*list, capacity*sizeof(WeightArray));
}
(*list)[nb_arrays++] = array;
}
}
(*list)[nb_arrays].name=NULL;
return nb_arrays;
}
#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#include <sys/stat.h>
#include <stdio.h>
int main()
{
int fd;
unsigned char *data;
int len;
int nb_arrays;
int i;
WeightArray *list;
struct stat st;
const char *filename = "weights_blob.bin";
stat(filename, &st);
len = st.st_size;
fd = open(filename, O_RDONLY);
data = mmap(NULL, len, PROT_READ, MAP_SHARED, fd, 0);
printf("size is %d\n", len);
nb_arrays = parse_weights(&list, data, len);
for (i=0;i<nb_arrays;i++) {
printf("found %s: size %d\n", list[i].name, list[i].size);
}
printf("%p\n", list[i].name);
free(list);
munmap(data, len);
close(fd);
return 0;
}
......@@ -39,6 +39,7 @@ import h5py
import re
import argparse
array_list = []
# no cuda devices needed
os.environ['CUDA_VISIBLE_DEVICES'] = ""
......@@ -52,11 +53,19 @@ max_conv_inputs = 1
max_mdense_tmp = 1
def printVector(f, vector, name, dtype='float', dotp=False):
global array_list
if dotp:
vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
vector = vector.transpose((2, 0, 3, 1))
v = np.reshape(vector, (-1));
#print('static const float ', name, '[', len(v), '] = \n', file=f)
if name not in array_list:
array_list.append(name)
f.write('#ifdef USE_WEIGHTS_FILE\n')
f.write('static const {} *{} = NULL;\n'.format(dtype, name, len(v)))
f.write('#else\n')
f.write('#define WEIGHTS_{}_DEFINED\n'.format(name))
f.write('#define WEIGHTS_{}_TYPE WEIGHT_TYPE_{}\n'.format(name, dtype))
f.write('static const {} {}[{}] = {{\n '.format(dtype, name, len(v)))
for i in range(0, len(v)):
f.write('{}'.format(v[i]))
......@@ -69,7 +78,8 @@ def printVector(f, vector, name, dtype='float', dotp=False):
else:
f.write(" ")
#print(v, file=f)
f.write('\n};\n\n')
f.write('\n};\n')
f.write('#endif\n\n')
return;
def printSparseVector(f, A, name, have_diag=True):
......@@ -342,6 +352,15 @@ if __name__ == "__main__":
dump_sparse_gru(model.get_layer('gru_a'), f, hf)
f.write('#ifdef DUMP_BINARY_WEIGHTS\n')
f.write('const WeightArray lpcnet_arrays[] = {\n')
for name in array_list:
f.write('#ifdef WEIGHTS_{}_DEFINED\n'.format(name))
f.write(' {{"{}", WEIGHTS_{}_TYPE, sizeof({}), {}}},\n'.format(name, name, name, name))
f.write('#endif\n')
f.write(' {NULL, 0, 0}\n};\n')
f.write('#endif\n')
hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons))
hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs))
hf.write('#define MAX_MDENSE_TMP {}\n\n'.format(max_mdense_tmp))
......
/* Copyright (c) 2023 Amazon */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include "nnet.h"
extern const WeightArray lpcnet_arrays[];
void write_weights(const WeightArray *list, FILE *fout)
{
int i=0;
unsigned char zeros[WEIGHT_BLOCK_SIZE] = {0};
while (list[i].name != NULL) {
WeightHead h;
strcpy(h.head, "DNNw");
h.version = WEIGHT_BLOB_VERSION;
h.type = list[i].type;
h.size = list[i].size;
h.block_size = (h.size+WEIGHT_BLOCK_SIZE-1)/WEIGHT_BLOCK_SIZE*WEIGHT_BLOCK_SIZE;
RNN_CLEAR(h.name, sizeof(h.name));
strncpy(h.name, list[i].name, sizeof(h.name));
h.name[sizeof(h.name)-1] = 0;
celt_assert(sizeof(h) == WEIGHT_BLOCK_SIZE);
fwrite(&h, 1, WEIGHT_BLOCK_SIZE, fout);
fwrite(list[i].data, 1, h.size, fout);
fwrite(zeros, 1, h.block_size-h.size, fout);
i++;
}
}
int main()
{
FILE *fout = fopen("weights_blob.bin", "w");
write_weights(lpcnet_arrays, fout);
fclose(fout);
return 0;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment