Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
Opus
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Xiph.Org
Opus
Commits
cc714cc5
Commit
cc714cc5
authored
1 year ago
by
Jean-Marc Valin
Browse files
Options
Downloads
Patches
Plain Diff
binary weights work in progress
parent
1074e5f0
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
dnn/nnet.h
+23
-0
23 additions, 0 deletions
dnn/nnet.h
dnn/parse_lpcnet_weights.c
+104
-0
104 additions, 0 deletions
dnn/parse_lpcnet_weights.c
dnn/training_tf2/dump_lpcnet.py
+20
-1
20 additions, 1 deletion
dnn/training_tf2/dump_lpcnet.py
dnn/write_lpcnet_weights.c
+64
-0
64 additions, 0 deletions
dnn/write_lpcnet_weights.c
with
211 additions
and
1 deletion
dnn/nnet.h
+
23
−
0
View file @
cc714cc5
...
...
@@ -38,6 +38,29 @@
#define ACTIVATION_SOFTMAX 4
#define ACTIVATION_SWISH 5
#define WEIGHT_BLOB_VERSION 0
#define WEIGHT_BLOCK_SIZE 64
typedef
struct
{
const
char
*
name
;
int
type
;
int
size
;
const
void
*
data
;
}
WeightArray
;
#define WEIGHT_TYPE_float 0
#define WEIGHT_TYPE_int 1
#define WEIGHT_TYPE_qweight 2
typedef
struct
{
char
head
[
4
];
int
version
;
int
type
;
int
size
;
int
block_size
;
char
name
[
44
];
}
WeightHead
;
typedef
struct
{
const
float
*
bias
;
const
float
*
input_weights
;
...
...
This diff is collapsed.
Click to expand it.
dnn/parse_lpcnet_weights.c
0 → 100644
+
104
−
0
View file @
cc714cc5
/* Copyright (c) 2023 Amazon */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include
"config.h"
#endif
#include
"nnet.h"
extern
const
WeightArray
lpcnet_arrays
[];
int
parse_record
(
const
unsigned
char
**
data
,
int
*
len
,
WeightArray
*
array
)
{
if
(
*
len
<
WEIGHT_BLOCK_SIZE
)
return
-
1
;
WeightHead
*
h
=
(
WeightHead
*
)
*
data
;
if
(
h
->
block_size
<
h
->
size
)
return
-
1
;
if
(
*
len
<
h
->
block_size
+
WEIGHT_BLOCK_SIZE
)
return
-
1
;
if
(
h
->
name
[
sizeof
(
h
->
name
)
-
1
]
!=
0
)
return
-
1
;
if
(
h
->
size
<
0
)
return
-
1
;
array
->
name
=
h
->
name
;
array
->
type
=
h
->
type
;
array
->
size
=
h
->
size
;
array
->
data
=
(
*
data
)
+
WEIGHT_BLOCK_SIZE
;
*
data
+=
h
->
block_size
+
WEIGHT_BLOCK_SIZE
;
*
len
-=
h
->
block_size
+
WEIGHT_BLOCK_SIZE
;
return
array
->
size
;
}
int
parse_weights
(
WeightArray
**
list
,
const
unsigned
char
*
data
,
int
len
)
{
int
nb_arrays
=
0
;
int
capacity
=
20
;
*
list
=
malloc
(
capacity
*
sizeof
(
WeightArray
));
while
(
len
>
0
)
{
int
ret
;
WeightArray
array
=
{
NULL
,
0
,
0
,
0
};
ret
=
parse_record
(
&
data
,
&
len
,
&
array
);
if
(
ret
>
0
)
{
if
(
nb_arrays
+
1
>=
capacity
)
{
/* Make sure there's room for the ending NULL element too. */
capacity
=
capacity
*
3
/
2
;
*
list
=
realloc
(
*
list
,
capacity
*
sizeof
(
WeightArray
));
}
(
*
list
)[
nb_arrays
++
]
=
array
;
}
}
(
*
list
)[
nb_arrays
].
name
=
NULL
;
return
nb_arrays
;
}
#include
<fcntl.h>
#include
<sys/mman.h>
#include
<unistd.h>
#include
<sys/stat.h>
#include
<stdio.h>
int
main
()
{
int
fd
;
unsigned
char
*
data
;
int
len
;
int
nb_arrays
;
int
i
;
WeightArray
*
list
;
struct
stat
st
;
const
char
*
filename
=
"weights_blob.bin"
;
stat
(
filename
,
&
st
);
len
=
st
.
st_size
;
fd
=
open
(
filename
,
O_RDONLY
);
data
=
mmap
(
NULL
,
len
,
PROT_READ
,
MAP_SHARED
,
fd
,
0
);
printf
(
"size is %d
\n
"
,
len
);
nb_arrays
=
parse_weights
(
&
list
,
data
,
len
);
for
(
i
=
0
;
i
<
nb_arrays
;
i
++
)
{
printf
(
"found %s: size %d
\n
"
,
list
[
i
].
name
,
list
[
i
].
size
);
}
printf
(
"%p
\n
"
,
list
[
i
].
name
);
free
(
list
);
munmap
(
data
,
len
);
close
(
fd
);
return
0
;
}
This diff is collapsed.
Click to expand it.
dnn/training_tf2/dump_lpcnet.py
+
20
−
1
View file @
cc714cc5
...
...
@@ -39,6 +39,7 @@ import h5py
import
re
import
argparse
array_list
=
[]
# no cuda devices needed
os
.
environ
[
'
CUDA_VISIBLE_DEVICES
'
]
=
""
...
...
@@ -52,11 +53,19 @@ max_conv_inputs = 1
max_mdense_tmp
=
1
def
printVector
(
f
,
vector
,
name
,
dtype
=
'
float
'
,
dotp
=
False
):
global
array_list
if
dotp
:
vector
=
vector
.
reshape
((
vector
.
shape
[
0
]
//
4
,
4
,
vector
.
shape
[
1
]
//
8
,
8
))
vector
=
vector
.
transpose
((
2
,
0
,
3
,
1
))
v
=
np
.
reshape
(
vector
,
(
-
1
));
#print('static const float ', name, '[', len(v), '] = \n', file=f)
if
name
not
in
array_list
:
array_list
.
append
(
name
)
f
.
write
(
'
#ifdef USE_WEIGHTS_FILE
\n
'
)
f
.
write
(
'
static const {} *{} = NULL;
\n
'
.
format
(
dtype
,
name
,
len
(
v
)))
f
.
write
(
'
#else
\n
'
)
f
.
write
(
'
#define WEIGHTS_{}_DEFINED
\n
'
.
format
(
name
))
f
.
write
(
'
#define WEIGHTS_{}_TYPE WEIGHT_TYPE_{}
\n
'
.
format
(
name
,
dtype
))
f
.
write
(
'
static const {} {}[{}] = {{
\n
'
.
format
(
dtype
,
name
,
len
(
v
)))
for
i
in
range
(
0
,
len
(
v
)):
f
.
write
(
'
{}
'
.
format
(
v
[
i
]))
...
...
@@ -69,7 +78,8 @@ def printVector(f, vector, name, dtype='float', dotp=False):
else
:
f
.
write
(
"
"
)
#print(v, file=f)
f
.
write
(
'
\n
};
\n\n
'
)
f
.
write
(
'
\n
};
\n
'
)
f
.
write
(
'
#endif
\n\n
'
)
return
;
def
printSparseVector
(
f
,
A
,
name
,
have_diag
=
True
):
...
...
@@ -342,6 +352,15 @@ if __name__ == "__main__":
dump_sparse_gru
(
model
.
get_layer
(
'
gru_a
'
),
f
,
hf
)
f
.
write
(
'
#ifdef DUMP_BINARY_WEIGHTS
\n
'
)
f
.
write
(
'
const WeightArray lpcnet_arrays[] = {
\n
'
)
for
name
in
array_list
:
f
.
write
(
'
#ifdef WEIGHTS_{}_DEFINED
\n
'
.
format
(
name
))
f
.
write
(
'
{{
"
{}
"
, WEIGHTS_{}_TYPE, sizeof({}), {}}},
\n
'
.
format
(
name
,
name
,
name
,
name
))
f
.
write
(
'
#endif
\n
'
)
f
.
write
(
'
{NULL, 0, 0}
\n
};
\n
'
)
f
.
write
(
'
#endif
\n
'
)
hf
.
write
(
'
#define MAX_RNN_NEURONS {}
\n\n
'
.
format
(
max_rnn_neurons
))
hf
.
write
(
'
#define MAX_CONV_INPUTS {}
\n\n
'
.
format
(
max_conv_inputs
))
hf
.
write
(
'
#define MAX_MDENSE_TMP {}
\n\n
'
.
format
(
max_mdense_tmp
))
...
...
This diff is collapsed.
Click to expand it.
dnn/write_lpcnet_weights.c
0 → 100644
+
64
−
0
View file @
cc714cc5
/* Copyright (c) 2023 Amazon */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include
"config.h"
#endif
#include
<stdio.h>
#include
"nnet.h"
extern
const
WeightArray
lpcnet_arrays
[];
void
write_weights
(
const
WeightArray
*
list
,
FILE
*
fout
)
{
int
i
=
0
;
unsigned
char
zeros
[
WEIGHT_BLOCK_SIZE
]
=
{
0
};
while
(
list
[
i
].
name
!=
NULL
)
{
WeightHead
h
;
strcpy
(
h
.
head
,
"DNNw"
);
h
.
version
=
WEIGHT_BLOB_VERSION
;
h
.
type
=
list
[
i
].
type
;
h
.
size
=
list
[
i
].
size
;
h
.
block_size
=
(
h
.
size
+
WEIGHT_BLOCK_SIZE
-
1
)
/
WEIGHT_BLOCK_SIZE
*
WEIGHT_BLOCK_SIZE
;
RNN_CLEAR
(
h
.
name
,
sizeof
(
h
.
name
));
strncpy
(
h
.
name
,
list
[
i
].
name
,
sizeof
(
h
.
name
));
h
.
name
[
sizeof
(
h
.
name
)
-
1
]
=
0
;
celt_assert
(
sizeof
(
h
)
==
WEIGHT_BLOCK_SIZE
);
fwrite
(
&
h
,
1
,
WEIGHT_BLOCK_SIZE
,
fout
);
fwrite
(
list
[
i
].
data
,
1
,
h
.
size
,
fout
);
fwrite
(
zeros
,
1
,
h
.
block_size
-
h
.
size
,
fout
);
i
++
;
}
}
int
main
()
{
FILE
*
fout
=
fopen
(
"weights_blob.bin"
,
"w"
);
write_weights
(
lpcnet_arrays
,
fout
);
fclose
(
fout
);
return
0
;
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment