Skip to content
Snippets Groups Projects
Unverified Commit da60266f authored by Jan Buethe's avatar Jan Buethe
Browse files

updated moc method

parent feb32828
No related branches found
No related tags found
No related merge requests found
Pipeline #4171 failed
import numpy as np
import scipy.signal
def compute_vad_mask(x, fs, stop_db=-70):
frame_length = (fs + 49) // 50
x = x[: frame_length * (len(x) // frame_length)]
frames = x.reshape(-1, frame_length)
frame_energy = np.sum(frames ** 2, axis=1)
frame_energy_smooth = np.convolve(frame_energy, np.ones(5) / 5, mode='same')
max_threshold = frame_energy.max() * 10 ** (stop_db/20)
vactive = np.ones_like(frames)
vactive[frame_energy_smooth < max_threshold, :] = 0
vactive = vactive.reshape(-1)
filter = np.sin(np.arange(frame_length) * np.pi / (frame_length - 1))
filter = filter / filter.sum()
mask = np.convolve(vactive, filter, mode='same')
return x, mask
def convert_mask(mask, num_frames, frame_size=160, hop_size=40):
num_samples = frame_size + (num_frames - 1) * hop_size
if len(mask) < num_samples:
mask = np.concatenate((mask, np.zeros(num_samples - len(mask))), dtype=mask.dtype)
else:
mask = mask[:num_samples]
new_mask = np.array([np.mean(mask[i*hop_size : i*hop_size + frame_size]) for i in range(num_frames)])
return new_mask
def power_spectrum(x, window_size=160, hop_size=40, window='hamming'):
num_spectra = (len(x) - window_size - hop_size) // hop_size
window = scipy.signal.get_window(window, window_size)
......@@ -36,7 +68,7 @@ def rect_fb(band_limits, num_bins=None):
return fb
def compare(x, y):
def compare(x, y, apply_vad=False):
""" Modified version of opus_compare for 16 kHz mono signals
Args:
......@@ -84,7 +116,38 @@ def compare(x, y):
re = masked_psd_y / masked_psd_x
im = re - np.log(re) - 1
Eb = ((im @ fb.T) / np.sum(fb, axis=1))
Ef = np.mean(Eb ** 2, axis=1)
err = np.mean(Ef ** 4, axis=0) ** (1/16)
Ef = np.mean(Eb , axis=1)
if apply_vad:
_, mask = compute_vad_mask(x, 16000)
mask = convert_mask(mask, Ef.shape[0])
else:
mask = np.ones_like(Ef)
err = np.mean(np.abs(Ef[mask > 1e-6]) ** 3) ** (1/6)
return float(err)
if __name__ == "__main__":
import argparse
from scipy.io import wavfile
parser = argparse.ArgumentParser()
parser.add_argument('ref', type=str, help='reference wav file')
parser.add_argument('deg', type=str, help='degraded wav file')
parser.add_argument('--apply-vad', action='store_true')
args = parser.parse_args()
fs1, x = wavfile.read(args.ref)
fs2, y = wavfile.read(args.deg)
if max(fs1, fs2) != 16000:
raise ValueError('error: encountered sampling frequency diffrent from 16kHz')
x = x.astype(np.float32) / 2**15
y = y.astype(np.float32) / 2**15
err = compare(x, y, apply_vad=args.apply_vad)
return float(err)
\ No newline at end of file
print(f"MOC: {err}")
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment