Commit d17ac4fe authored by Deb Mukherjee's avatar Deb Mukherjee
Browse files

Continued rate control clean-ups

Moves all post encode rate control updates to a separate function
plus other cleanups.

Change-Id: I70e8eccf666c88d8b649b969997fd84d27e4baaa
parent b60293e1
......@@ -76,6 +76,19 @@ static int select_cq_level(int qindex) {
return ret_val;
}
static int gfboost_qadjust(int qindex) {
const double q = vp9_convert_qindex_to_q(qindex);
return (int)((0.00000828 * q * q * q) +
(-0.0055 * q * q) +
(1.32 * q) + 79.3);
}
static int kfboost_qadjust(int qindex) {
const double q = vp9_convert_qindex_to_q(qindex);
return (int)((0.00000973 * q * q * q) +
(-0.00613 * q * q) +
(1.316 * q) + 121.2);
}
// Resets the first pass file to the given position using a relative seek from
// the current position.
......@@ -928,11 +941,11 @@ static int64_t estimate_modemvcost(VP9_COMP *cpi,
intra_cost = bitcost(av_intra);
// Estimate of extra bits per mv overhead for mbs
// << 9 is the normalization to the (bits * 512) used in vp9_bits_per_mb
// << 9 is the normalization to the (bits * 512) used in vp9_rc_bits_per_mb
mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
// Crude estimate of overhead cost from modes
// << 9 is the normalization to (bits * 512) used in vp9_bits_per_mb
// << 9 is the normalization to (bits * 512) used in vp9_rc_bits_per_mb
mode_cost =
(int)((((av_pct_inter - av_pct_motion) * zz_cost) +
(av_pct_motion * motion_cost) +
......@@ -1052,8 +1065,8 @@ static int estimate_max_q(VP9_COMP *cpi,
sr_correction * speed_correction *
cpi->twopass.est_max_qcorrection_factor;
bits_per_mb_at_this_q = vp9_bits_per_mb(INTER_FRAME, q,
err_correction_factor);
bits_per_mb_at_this_q = vp9_rc_bits_per_mb(INTER_FRAME, q,
err_correction_factor);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
......@@ -1140,7 +1153,7 @@ static int estimate_cq(VP9_COMP *cpi,
sr_correction * speed_correction * clip_iifactor;
bits_per_mb_at_this_q =
vp9_bits_per_mb(INTER_FRAME, q, err_correction_factor);
vp9_rc_bits_per_mb(INTER_FRAME, q, err_correction_factor);
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
break;
......@@ -1936,7 +1949,7 @@ static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
int q = cpi->rc.last_q[INTER_FRAME];
int gf_bits;
int boost = (cpi->rc.gfu_boost * vp9_gfboost_qadjust(q)) / 100;
int boost = (cpi->rc.gfu_boost * gfboost_qadjust(q)) / 100;
// Set max and minimum boost and hence minimum allocation
boost = clamp(boost, 125, (cpi->rc.baseline_gf_interval + 1) * 200);
......@@ -2728,3 +2741,21 @@ static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
// sizes.
cpi->twopass.modified_error_left -= kf_group_err;
}
void vp9_twopass_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
#ifdef DISABLE_RC_LONG_TERM_MEM
cpi->twopass.bits_left -= cpi->rc.this_frame_target;
#else
cpi->twopass.bits_left -= 8 * bytes_used;
#endif
if (!cpi->refresh_alt_ref_frame) {
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *
cpi->oxcf.two_pass_vbrmin_section
/ 100);
if (two_pass_min_rate < lower_bounds_min_rate)
two_pass_min_rate = lower_bounds_min_rate;
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate /
cpi->oxcf.framerate);
}
}
......@@ -159,7 +159,7 @@ void vp9_initialize_enc() {
vp9_tokenize_initialize();
vp9_init_quant_tables();
vp9_init_me_luts();
vp9_init_minq_luts();
vp9_rc_init_minq_luts();
// init_base_skip_probs();
vp9_entropy_mv_init();
init_done = 1;
......@@ -265,8 +265,8 @@ int vp9_compute_qdelta_by_rate(VP9_COMP *cpi,
vp9_clear_system_state();
// Look up the current projected bits per block for the base index
base_bits_per_mb = vp9_bits_per_mb(cpi->common.frame_type,
base_q_index, 1.0);
base_bits_per_mb = vp9_rc_bits_per_mb(cpi->common.frame_type,
base_q_index, 1.0);
// Find the target bits per mb based on the base value and given ratio.
target_bits_per_mb = rate_target_ratio * base_bits_per_mb;
......@@ -274,8 +274,8 @@ int vp9_compute_qdelta_by_rate(VP9_COMP *cpi,
// Convert the q target to an index
for (i = cpi->rc.best_quality; i < cpi->rc.worst_quality; i++) {
target_index = i;
if (vp9_bits_per_mb(cpi->common.frame_type,
i, 1.0) <= target_bits_per_mb )
if (vp9_rc_bits_per_mb(cpi->common.frame_type,
i, 1.0) <= target_bits_per_mb )
break;
}
......@@ -2683,7 +2683,7 @@ static void output_frame_level_debug_stats(VP9_COMP *cpi) {
static void encode_with_recode_loop(VP9_COMP *cpi,
unsigned long *size,
uint8_t *dest,
int q,
int *q,
int bottom_index,
int top_index,
int frame_over_shoot_limit,
......@@ -2697,7 +2697,7 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
do {
vp9_clear_system_state(); // __asm emms;
vp9_set_quantizer(cpi, q);
vp9_set_quantizer(cpi, *q);
if (loop_count == 0) {
// Set up entropy context depending on frame type. The decoder mandates
......@@ -2750,7 +2750,7 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
} else {
// Special case handling for forced key frames
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
int last_q = q;
int last_q = *q;
int kf_err = vp9_calc_ss_err(cpi->Source, get_frame_new_buffer(cm));
int high_err_target = cpi->ambient_err;
......@@ -2766,32 +2766,32 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
(kf_err > low_err_target &&
cpi->rc.projected_frame_size <= frame_under_shoot_limit)) {
// Lower q_high
q_high = q > q_low ? q - 1 : q_low;
q_high = *q > q_low ? *q - 1 : q_low;
// Adjust Q
q = (q * high_err_target) / kf_err;
q = MIN(q, (q_high + q_low) >> 1);
*q = ((*q) * high_err_target) / kf_err;
*q = MIN((*q), (q_high + q_low) >> 1);
} else if (kf_err < low_err_target &&
cpi->rc.projected_frame_size >= frame_under_shoot_limit) {
// The key frame is much better than the previous frame
// Raise q_low
q_low = q < q_high ? q + 1 : q_high;
q_low = *q < q_high ? *q + 1 : q_high;
// Adjust Q
q = (q * low_err_target) / kf_err;
q = MIN(q, (q_high + q_low + 1) >> 1);
*q = ((*q) * low_err_target) / kf_err;
*q = MIN((*q), (q_high + q_low + 1) >> 1);
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
*q = clamp(*q, q_low, q_high);
loop = q != last_q;
loop = *q != last_q;
} else if (recode_loop_test(
cpi, frame_over_shoot_limit, frame_under_shoot_limit,
q, top_index, bottom_index)) {
*q, top_index, bottom_index)) {
// Is the projected frame size out of range and are we allowed
// to attempt to recode.
int last_q = q;
int last_q = *q;
int retries = 0;
// Frame size out of permitted range:
......@@ -2800,22 +2800,22 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
// Frame is too large
if (cpi->rc.projected_frame_size > cpi->rc.this_frame_target) {
// Raise Qlow as to at least the current value
q_low = q < q_high ? q + 1 : q_high;
q_low = *q < q_high ? *q + 1 : q_high;
if (undershoot_seen || loop_count > 1) {
// Update rate_correction_factor unless
vp9_update_rate_correction_factors(cpi, 1);
vp9_rc_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low + 1) / 2;
*q = (q_high + q_low + 1) / 2;
} else {
// Update rate_correction_factor unless
vp9_update_rate_correction_factors(cpi, 0);
vp9_rc_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->rc.this_frame_target);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target);
while (q < q_low && retries < 10) {
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->rc.this_frame_target);
while (*q < q_low && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi, 0);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target);
retries++;
}
}
......@@ -2823,32 +2823,33 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
overshoot_seen = 1;
} else {
// Frame is too small
q_high = q > q_low ? q - 1 : q_low;
q_high = *q > q_low ? *q - 1 : q_low;
if (overshoot_seen || loop_count > 1) {
// Update rate_correction_factor unless
// cpi->rc.active_worst_quality has changed.
vp9_update_rate_correction_factors(cpi, 1);
vp9_rc_update_rate_correction_factors(cpi, 1);
q = (q_high + q_low) / 2;
*q = (q_high + q_low) / 2;
} else {
// Update rate_correction_factor unless
// cpi->rc.active_worst_quality has changed.
vp9_update_rate_correction_factors(cpi, 0);
vp9_rc_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->rc.this_frame_target);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target);
// Special case reset for qlow for constrained quality.
// This should only trigger where there is very substantial
// undershoot on a frame and the auto cq level is above
// the user passsed in value.
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) {
q_low = q;
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
*q < q_low) {
q_low = *q;
}
while (q > q_high && retries < 10) {
vp9_update_rate_correction_factors(cpi, 0);
q = vp9_regulate_q(cpi, cpi->rc.this_frame_target);
while (*q > q_high && retries < 10) {
vp9_rc_update_rate_correction_factors(cpi, 0);
*q = vp9_rc_regulate_q(cpi, cpi->rc.this_frame_target);
retries++;
}
}
......@@ -2857,9 +2858,9 @@ static void encode_with_recode_loop(VP9_COMP *cpi,
}
// Clamp Q to upper and lower limits:
q = clamp(q, q_low, q_high);
*q = clamp(*q, q_low, q_high);
loop = q != last_q;
loop = *q != last_q;
} else {
loop = 0;
}
......@@ -3000,15 +3001,16 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
configure_static_seg_features(cpi);
}
// Decide how big to make the frame.
vp9_pick_frame_size(cpi);
vp9_clear_system_state();
q = vp9_pick_q_and_adjust_q_bounds(cpi, &bottom_index, &top_index);
// Decide how big to make the frame.
vp9_rc_pick_frame_size_and_bounds(cpi,
&frame_under_shoot_limit,
&frame_over_shoot_limit);
vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
q = vp9_rc_pick_q_and_adjust_q_bounds(cpi,
&bottom_index,
&top_index);
#if CONFIG_MULTIPLE_ARF
// Force the quantizer determined by the coding order pattern.
......@@ -3072,7 +3074,7 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
encode_with_recode_loop(cpi,
size,
dest,
q,
&q,
bottom_index,
top_index,
frame_over_shoot_limit,
......@@ -3154,106 +3156,7 @@ static void encode_frame_to_data_rate(VP9_COMP *cpi,
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
// Update rate control heuristics
cpi->rc.projected_frame_size = (*size) << 3;
// Post encode loop adjustment of Q prediction.
vp9_update_rate_correction_factors(
cpi, (cpi->sf.recode_loop ||
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) ? 2 : 0);
cpi->rc.last_q[cm->frame_type] = cm->base_qindex;
// Keep record of last boosted (KF/KF/ARF) Q value.
// If the current frame is coded at a lower Q then we also update it.
// If all mbs in this group are skipped only update if the Q value is
// better than that already stored.
// This is used to help set quality in forced key frames to reduce popping
if ((cm->base_qindex < cpi->rc.last_boosted_qindex) ||
((cpi->static_mb_pct < 100) &&
((cm->frame_type == KEY_FRAME) ||
cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) {
cpi->rc.last_boosted_qindex = cm->base_qindex;
}
if (cm->frame_type == KEY_FRAME) {
vp9_adjust_key_frame_context(cpi);
}
// Keep a record of ambient average Q.
if (cm->frame_type != KEY_FRAME)
cpi->rc.avg_frame_qindex = (2 + 3 * cpi->rc.avg_frame_qindex +
cm->base_qindex) >> 2;
// Keep a record from which we can calculate the average Q excluding GF
// updates and key frames.
if (cm->frame_type != KEY_FRAME &&
!cpi->refresh_golden_frame &&
!cpi->refresh_alt_ref_frame) {
cpi->rc.ni_frames++;
cpi->rc.tot_q += vp9_convert_qindex_to_q(q);
cpi->rc.avg_q = cpi->rc.tot_q / (double)cpi->rc.ni_frames;
// Calculate the average Q for normal inter frames (not key or GFU frames).
cpi->rc.ni_tot_qi += q;
cpi->rc.ni_av_qi = cpi->rc.ni_tot_qi / cpi->rc.ni_frames;
}
// Update the buffer level variable.
// Non-viewable frames are a special case and are treated as pure overhead.
if (!cm->show_frame)
cpi->rc.bits_off_target -= cpi->rc.projected_frame_size;
else
cpi->rc.bits_off_target += cpi->rc.av_per_frame_bandwidth -
cpi->rc.projected_frame_size;
// Clip the buffer level at the maximum buffer size
if (cpi->rc.bits_off_target > cpi->oxcf.maximum_buffer_size)
cpi->rc.bits_off_target = cpi->oxcf.maximum_buffer_size;
// Rolling monitors of whether we are over or underspending used to help
// regulate min and Max Q in two pass.
if (cm->frame_type != KEY_FRAME) {
cpi->rc.rolling_target_bits =
((cpi->rc.rolling_target_bits * 3) +
cpi->rc.this_frame_target + 2) / 4;
cpi->rc.rolling_actual_bits =
((cpi->rc.rolling_actual_bits * 3) +
cpi->rc.projected_frame_size + 2) / 4;
cpi->rc.long_rolling_target_bits =
((cpi->rc.long_rolling_target_bits * 31) +
cpi->rc.this_frame_target + 16) / 32;
cpi->rc.long_rolling_actual_bits =
((cpi->rc.long_rolling_actual_bits * 31) +
cpi->rc.projected_frame_size + 16) / 32;
}
// Actual bits spent
cpi->rc.total_actual_bits += cpi->rc.projected_frame_size;
// Debug stats
cpi->rc.total_target_vs_actual += (cpi->rc.this_frame_target -
cpi->rc.projected_frame_size);
cpi->rc.buffer_level = cpi->rc.bits_off_target;
#ifndef DISABLE_RC_LONG_TERM_MEM
// Update bits left to the kf and gf groups to account for overshoot or
// undershoot on these frames
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits += cpi->rc.this_frame_target -
cpi->rc.projected_frame_size;
cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0);
} else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits += cpi->rc.this_frame_target -
cpi->rc.projected_frame_size;
cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0);
}
#endif
vp9_rc_postencode_update(cpi, *size, q);
#if 0
output_frame_level_debug_stats(cpi);
......@@ -3383,6 +3286,10 @@ static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
encode_frame_to_data_rate(cpi, size, dest, frame_flags);
// vp9_print_modes_and_motion_vectors(&cpi->common, "encode.stt");
vp9_twopass_postencode_update(cpi, *size);
/*
#ifdef DISABLE_RC_LONG_TERM_MEM
cpi->twopass.bits_left -= cpi->rc.this_frame_target;
#else
......@@ -3401,6 +3308,7 @@ static void Pass2Encode(VP9_COMP *cpi, unsigned long *size,
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate
/ cpi->oxcf.framerate);
}
*/
}
static void check_initial_width(VP9_COMP *cpi, YV12_BUFFER_CONFIG *sd) {
......
......@@ -30,7 +30,6 @@
#include "vp9/encoder/vp9_lookahead.h"
#define DISABLE_RC_LONG_TERM_MEM 0
// #define MODE_TEST_HIT_STATS
// #define SPEEDSTATS 1
......
......@@ -26,6 +26,8 @@
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_seg_common.h"
#define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 0
#define MIN_BPB_FACTOR 0.005
#define MAX_BPB_FACTOR 50
......@@ -67,7 +69,7 @@ static int calculate_minq_index(double maxq,
return QINDEX_RANGE - 1;
}
void vp9_init_minq_luts(void) {
void vp9_rc_init_minq_luts(void) {
int i;
for (i = 0; i < QINDEX_RANGE; i++) {
......@@ -121,22 +123,8 @@ double vp9_convert_qindex_to_q(int qindex) {
return vp9_ac_quant(qindex, 0) / 4.0;
}
int vp9_gfboost_qadjust(int qindex) {
const double q = vp9_convert_qindex_to_q(qindex);
return (int)((0.00000828 * q * q * q) +
(-0.0055 * q * q) +
(1.32 * q) + 79.3);
}
static int kfboost_qadjust(int qindex) {
const double q = vp9_convert_qindex_to_q(qindex);
return (int)((0.00000973 * q * q * q) +
(-0.00613 * q * q) +
(1.316 * q) + 121.2);
}
int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
double correction_factor) {
int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex,
double correction_factor) {
const double q = vp9_convert_qindex_to_q(qindex);
int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;
......@@ -213,7 +201,7 @@ void vp9_setup_inter_frame(VP9_COMP *cpi) {
static int estimate_bits_at_q(int frame_kind, int q, int mbs,
double correction_factor) {
const int bpm = (int)(vp9_bits_per_mb(frame_kind, q, correction_factor));
const int bpm = (int)(vp9_rc_bits_per_mb(frame_kind, q, correction_factor));
// Attempt to retain reasonable accuracy without overflow. The cutoff is
// chosen such that the maximum product of Bpm and MBs fits 31 bits. The
......@@ -240,15 +228,9 @@ static void calc_iframe_target_size(VP9_COMP *cpi) {
if (target > max_rate)
target = max_rate;
}
cpi->rc.this_frame_target = target;
// Target rate per SB64 (including partial SB64s.
cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) /
(cpi->common.width * cpi->common.height);
}
// Do the best we can to define the parameters for the next GF based
// on what information we have available.
//
......@@ -273,11 +255,6 @@ static void calc_pframe_target_size(VP9_COMP *cpi) {
cpi->rc.this_frame_target = cpi->rc.per_frame_bandwidth;
}
// Target rate per SB64 (including partial SB64s.
cpi->rc.sb64_target_rate = ((int64_t)cpi->rc.this_frame_target * 64 * 64) /
(cpi->common.width * cpi->common.height);
// Check that the total sum of adjustments is not above the maximum allowed.
// That is, having allowed for the KF and GF penalties, we have not pushed
// the current inter-frame target too low. If the adjustment we apply here is
......@@ -309,7 +286,7 @@ static void calc_pframe_target_size(VP9_COMP *cpi) {
}
void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
const int q = cpi->common.base_qindex;
int correction_factor = 100;
double rate_correction_factor;
......@@ -390,7 +367,7 @@ void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
}
int vp9_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame) {
int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame) {
int q = cpi->rc.active_worst_quality;
int i;
......@@ -422,8 +399,8 @@ int vp9_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame) {
i = cpi->rc.active_best_quality;
do {
bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i,
correction_factor);
bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cpi->common.frame_type, i,
correction_factor);
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
......@@ -461,8 +438,9 @@ static int get_active_quality(int q,
return active_best_quality;
}
int vp9_pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
int * bottom_index, int * top_index) {
int vp9_rc_pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
int *bottom_index,
int *top_index) {
// Set an active best quality and if necessary active worst quality
int q = cpi->rc.active_worst_quality;
VP9_COMMON *const cm = &cpi->common;
......@@ -481,7 +459,12 @@ int vp9_pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
(last_boosted_q * 0.75));
cpi->rc.active_best_quality = MAX(qindex + delta_qindex,
cpi->rc.best_quality);
cpi->rc.best_quality);
} else if (cpi->pass == 0 && cpi->common.current_video_frame == 0) {
// If this is the first (key) frame in 1-pass, active best/worst is
// the user best/worst-allowed, and leave the top_index to active_worst.
cpi->rc.active_best_quality = cpi->oxcf.best_allowed_q;
cpi->rc.active_worst_quality = cpi->oxcf.worst_allowed_q;
} else {
int high = 5000;
int low = 400;
......@@ -490,9 +473,9 @@ int vp9_pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
// Baseline value derived from cpi->active_worst_quality and kf boost
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.kf_boost,
low, high,
kf_low_motion_minq,
kf_high_motion_minq);
low, high,
kf_low_motion_minq,
kf_high_motion_minq);
// Allow somewhat lower kf minq with small image formats.
if ((cm->width * cm->height) <= (352 * 288)) {
......@@ -533,14 +516,14 @@ int vp9_pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
q = cpi->cq_target_quality;
if (cpi->frames_since_key > 1) {
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
low, high,
afq_low_motion_minq,
afq_high_motion_minq);
low, high,
afq_low_motion_minq,
afq_high_motion_minq);
} else {
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
low, high,
gf_low_motion_minq,
gf_high_motion_minq);
low, high,
gf_low_motion_minq,
gf_high_motion_minq);
}
// Constrained quality use slightly lower active best.
cpi->rc.active_best_quality = cpi->rc.active_best_quality * 15 / 16;
......@@ -550,22 +533,19 @@ int vp9_pick_q_and_adjust_q_bounds(VP9_COMP *cpi,
cpi->rc.active_best_quality = cpi->cq_target_quality;
} else {
if (cpi->frames_since_key > 1) {
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
low, high,
afq_low_motion_minq,
afq_high_motion_minq);
cpi->rc.active_best_quality = get_active_quality(
q, cpi->rc.gfu_boost, low, high,
afq_low_motion_minq, afq_high_motion_minq);
} else {
cpi->rc.active_best_quality = get_active_quality(q, cpi->rc.gfu_boost,
low, high,
gf_low_motion_minq,
gf_high_motion_minq);