Newer
Older
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "lossgen.h"
#include "os_support.h"
#include "nnet.h"
/* Disable RTCD for this. */
#define RTCD_ARCH c
/* Override assert to avoid undefined/redefined symbols. */
#undef celt_assert
#define celt_assert assert
/* Directly include the C files we need since the symbols won't be exposed if we link in a shared object. */
#include "parse_lpcnet_weights.c"
#undef compute_linear
#undef compute_activation
/* Force the C version since the SIMD versions may be hidden. */
#define compute_linear(linear, out, in, arch) ((void)(arch),compute_linear_c(linear, out, in))
#define compute_activation(output, input, N, activation, arch) ((void)(arch),compute_activation_c(output, input, N, activation))
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#define MAX_RNN_NEURONS_ALL IMAX(LOSSGEN_GRU1_STATE_SIZE, LOSSGEN_GRU2_STATE_SIZE)
/* These two functions are copied from nnet.c to make sure we don't have linking issues. */
void compute_generic_gru_lossgen(const LinearLayer *input_weights, const LinearLayer *recurrent_weights, float *state, const float *in, int arch)
{
int i;
int N;
float zrh[3*MAX_RNN_NEURONS_ALL];
float recur[3*MAX_RNN_NEURONS_ALL];
float *z;
float *r;
float *h;
celt_assert(3*recurrent_weights->nb_inputs == recurrent_weights->nb_outputs);
celt_assert(input_weights->nb_outputs == recurrent_weights->nb_outputs);
N = recurrent_weights->nb_inputs;
z = zrh;
r = &zrh[N];
h = &zrh[2*N];
celt_assert(recurrent_weights->nb_outputs <= 3*MAX_RNN_NEURONS_ALL);
celt_assert(in != state);
compute_linear(input_weights, zrh, in, arch);
compute_linear(recurrent_weights, recur, state, arch);
for (i=0;i<2*N;i++)
zrh[i] += recur[i];
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID, arch);
for (i=0;i<N;i++)
h[i] += recur[2*N+i]*r[i];
compute_activation(h, h, N, ACTIVATION_TANH, arch);
for (i=0;i<N;i++)
h[i] = z[i]*state[i] + (1-z[i])*h[i];
for (i=0;i<N;i++)
state[i] = h[i];
}
void compute_generic_dense_lossgen(const LinearLayer *layer, float *output, const float *input, int activation, int arch)
{
compute_linear(layer, output, input, arch);
compute_activation(output, output, layer->nb_outputs, activation, arch);
}
int sample_loss(
LossGenState *st,
{
float input[2];
float tmp[LOSSGEN_DENSE_IN_OUT_SIZE];
float out;
int loss;
LossGen *model = &st->model;
input[0] = st->last_loss;
input[1] = percent_loss;
compute_generic_dense_lossgen(&model->lossgen_dense_in, tmp, input, ACTIVATION_TANH, 0);
compute_generic_gru_lossgen(&model->lossgen_gru1_input, &model->lossgen_gru1_recurrent, st->gru1_state, tmp, 0);
compute_generic_gru_lossgen(&model->lossgen_gru2_input, &model->lossgen_gru2_recurrent, st->gru2_state, st->gru1_state, 0);
compute_generic_dense_lossgen(&model->lossgen_dense_out, &out, st->gru2_state, ACTIVATION_SIGMOID, 0);
loss = (float)rand()/RAND_MAX < out;
st->last_loss = loss;
return loss;
}
void lossgen_init(LossGenState *st)
{
int ret;
OPUS_CLEAR(st, 1);
#ifndef USE_WEIGHTS_FILE
ret = init_lossgen(&st->model, lossgen_arrays);
#else
ret = 0;
#endif
celt_assert(ret == 0);
}
int lossgen_load_model(LossGenState *st, const unsigned char *data, int len) {
WeightArray *list;
int ret;
parse_weights(&list, data, len);
ret = init_lossgen(&st->model, list);
opus_free(list);
if (ret == 0) return 0;
else return -1;
}
#if 0
#include <stdio.h>
int main(int argc, char **argv) {
int i, N;
float p;
LossGenState st;
if (argc!=3) {
fprintf(stderr, "usage: lossgen <percentage> <length>\n");
return 1;
}
lossgen_init(&st);
p = atof(argv[1]);
N = atoi(argv[2]);
for (i=0;i<N;i++) {