Skip to content
Snippets Groups Projects
nnet.h 5.38 KiB
Newer Older
/* Copyright (c) 2018 Mozilla
   Copyright (c) 2017 Jean-Marc Valin */
/*
   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

   - Redistributions of source code must retain the above copyright
   notice, this list of conditions and the following disclaimer.

   - Redistributions in binary form must reproduce the above copyright
   notice, this list of conditions and the following disclaimer in the
   documentation and/or other materials provided with the distribution.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifndef NNET_H_
#define NNET_H_
#include <stddef.h>
#include "opus_types.h"

#define ACTIVATION_LINEAR  0
#define ACTIVATION_SIGMOID 1
#define ACTIVATION_TANH    2
#define ACTIVATION_RELU    3
#define ACTIVATION_SOFTMAX 4
#define ACTIVATION_SWISH   5
#define WEIGHT_BLOB_VERSION 0
#define WEIGHT_BLOCK_SIZE 64
typedef struct {
  const char *name;
  int type;
  int size;
  const void *data;
} WeightArray;

#define WEIGHT_TYPE_float 0
#define WEIGHT_TYPE_int 1
#define WEIGHT_TYPE_qweight 2
Jean-Marc Valin's avatar
Jean-Marc Valin committed
#define WEIGHT_TYPE_int8 3

typedef struct {
  char head[4];
  int version;
  int type;
  int size;
  int block_size;
  char name[44];
} WeightHead;

/* Generic sparse affine transformation. */
typedef struct {
  const float *bias;
  const float *subias;
  const opus_int8 *weights;
  const float *float_weights;
  const int *weights_idx;
  const float *diag;
  const float *scale;
  int nb_inputs;
  int nb_outputs;
} LinearLayer;
/* Generic sparse affine transformation. */
typedef struct {
  const float *bias;
  const float *float_weights;
  int in_channels;
  int out_channels;
  int ktime;
  int kheight;
} Conv2dLayer;
void compute_generic_dense(const LinearLayer *layer, float *output, const float *input, int activation, int arch);
void compute_generic_gru(const LinearLayer *input_weights, const LinearLayer *recurrent_weights, float *state, const float *in, int arch);
void compute_generic_conv1d(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int activation, int arch);
void compute_generic_conv1d_dilation(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int dilation, int activation, int arch);
void compute_glu(const LinearLayer *layer, float *output, const float *input, int arch);
void compute_gated_activation(const LinearLayer *layer, float *output, const float *input, int activation, int arch);
int parse_weights(WeightArray **list, const void *data, int len);
Jean-Marc Valin's avatar
Jean-Marc Valin committed
extern const WeightArray lpcnet_arrays[];
extern const WeightArray plcmodel_arrays[];
extern const WeightArray rdovaeenc_arrays[];
extern const WeightArray rdovaedec_arrays[];
extern const WeightArray fwgan_arrays[];
extern const WeightArray fargan_arrays[];
extern const WeightArray pitchdnn_arrays[];
extern const WeightArray lossgen_arrays[];
int linear_init(LinearLayer *layer, const WeightArray *arrays,
  const char *bias,
  const char *subias,
  const char *weights,
  const char *float_weights,
  const char *weights_idx,
  const char *diag,
  const char *scale,
  int nb_inputs,
  int nb_outputs);

int conv2d_init(Conv2dLayer *layer, const WeightArray *arrays,
  const char *bias,
  const char *float_weights,
  int in_channels,
  int out_channels,
  int ktime,
  int kheight);


void compute_linear_c(const LinearLayer *linear, float *out, const float *in);
void compute_activation_c(float *output, const float *input, int N, int activation);
void compute_conv2d_c(const Conv2dLayer *conv, float *out, float *mem, const float *in, int height, int hstride, int activation);

#if defined(OPUS_ARM_MAY_HAVE_DOTPROD) || defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
#include "arm/dnn_arm.h"
#endif

#if defined(OPUS_X86_MAY_HAVE_SSE2)
#include "x86/dnn_x86.h"
#endif

#ifndef OVERRIDE_COMPUTE_LINEAR
#define compute_linear(linear, out, in, arch) ((void)(arch),compute_linear_c(linear, out, in))
#endif

#ifndef OVERRIDE_COMPUTE_ACTIVATION
#define compute_activation(output, input, N, activation, arch) ((void)(arch),compute_activation_c(output, input, N, activation))
#endif

#ifndef OVERRIDE_COMPUTE_CONV2D
#define compute_conv2d(conv, out, mem, in, height, hstride, activation, arch) ((void)(arch),compute_conv2d_c(conv, out, mem, in, height, hstride, activation))
#endif
#if defined(__x86_64__) && !defined(OPUS_X86_MAY_HAVE_SSE4_1) && !defined(OPUS_X86_MAY_HAVE_AVX2)
#if defined(_MSC_VER)
#pragma message ("Only SSE and SSE2 are available. On newer machines, enable SSSE3/AVX/AVX2 to get better performance")
#else
#warning "Only SSE and SSE2 are available. On newer machines, enable SSSE3/AVX/AVX2 using -march= to get better performance"
#endif
#endif