Newer
Older
/* Copyright (c) 2010-2011 Xiph.Org Foundation, Skype Limited
Written by Jean-Marc Valin and Koen Vos */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdarg.h>
#include "API.h"
#include "stack_alloc.h"
#include "float_cast.h"
#include "opus.h"
#include "arch.h"
#include "os_support.h"
#include "cpu_support.h"
#include "analysis.h"
#include "mathops.h"
#include "tuning_parameters.h"
#include "fixed/structs_FIX.h"
#include "float/structs_FLP.h"
#define MAX_ENCODER_BUFFER 480
typedef struct {
opus_val32 XX, XY, YY;
opus_val16 smoothed_width;
opus_val16 max_follower;
} StereoWidthState;
struct OpusEncoder {
int celt_enc_offset;
int silk_enc_offset;
silk_EncControlStruct silk_mode;
int application;
int delay_compensation;
int force_channels;
int signal_type;
int user_bandwidth;
int user_forced_mode;
opus_int32 Fs;
int use_vbr;
int vbr_constraint;

Jean-Marc Valin
committed
int variable_duration;
opus_int32 bitrate_bps;
opus_int32 user_bitrate_bps;
#define OPUS_ENCODER_RESET_START stream_channels
int stream_channels;
opus_int32 variable_HP_smth2_Q15;
opus_val16 prev_HB_gain;
int mode;
int prev_mode;

Gregory Maxwell
committed
int prev_framesize;
int bandwidth;
int silk_bw_switch;
/* Sampling rate (at the API level) */
opus_val16 delay_buffer[MAX_ENCODER_BUFFER*2];
#ifndef DISABLE_FLOAT_API
TonalityAnalysisState analysis;
int detected_bandwidth;
int analysis_offset;
opus_uint32 rangeFinal;
/* Transition tables for the voice and music. First column is the
middle (memoriless) threshold. The second column is the hysteresis
(difference with the middle) */
static const opus_int32 mono_voice_bandwidth_thresholds[8] = {
11000, 1000, /* NB<->MB */
14000, 1000, /* MB<->WB */
17000, 1000, /* WB<->SWB */
21000, 2000, /* SWB<->FB */
static const opus_int32 mono_music_bandwidth_thresholds[8] = {
12000, 1000, /* NB<->MB */
15000, 1000, /* MB<->WB */
18000, 2000, /* WB<->SWB */
22000, 2000, /* SWB<->FB */
static const opus_int32 stereo_voice_bandwidth_thresholds[8] = {
11000, 1000, /* NB<->MB */
14000, 1000, /* MB<->WB */
21000, 2000, /* WB<->SWB */
28000, 2000, /* SWB<->FB */
};
static const opus_int32 stereo_music_bandwidth_thresholds[8] = {
12000, 1000, /* NB<->MB */
18000, 2000, /* MB<->WB */
21000, 2000, /* WB<->SWB */
30000, 2000, /* SWB<->FB */
};
/* Threshold bit-rates for switching between mono and stereo */
static const opus_int32 stereo_voice_threshold = 30000;
static const opus_int32 stereo_music_threshold = 30000;
/* Threshold bit-rate for switching between SILK/hybrid and CELT-only */
static const opus_int32 mode_thresholds[2][2] = {
/* voice */ /* music */
{ 64000, 16000}, /* mono */
{ 36000, 16000}, /* stereo */
int opus_encoder_get_size(int channels)
{
int silkEncSizeBytes, celtEncSizeBytes;
int ret;
if (channels<1 || channels > 2)
return 0;
ret = silk_Get_Encoder_Size( &silkEncSizeBytes );
return 0;
silkEncSizeBytes = align(silkEncSizeBytes);
celtEncSizeBytes = celt_encoder_get_size(channels);
return align(sizeof(OpusEncoder))+silkEncSizeBytes+celtEncSizeBytes;
}
int opus_encoder_init(OpusEncoder* st, opus_int32 Fs, int channels, int application)
void *silk_enc;
CELTEncoder *celt_enc;

Gregory Maxwell
committed
if((Fs!=48000&&Fs!=24000&&Fs!=16000&&Fs!=12000&&Fs!=8000)||(channels!=1&&channels!=2)||
(application != OPUS_APPLICATION_VOIP && application != OPUS_APPLICATION_AUDIO
&& application != OPUS_APPLICATION_RESTRICTED_LOWDELAY))
OPUS_CLEAR((char*)st, opus_encoder_get_size(channels));
/* Create SILK encoder */
ret = silk_Get_Encoder_Size( &silkEncSizeBytes );
silkEncSizeBytes = align(silkEncSizeBytes);
st->silk_enc_offset = align(sizeof(OpusEncoder));
st->celt_enc_offset = st->silk_enc_offset+silkEncSizeBytes;
silk_enc = (char*)st+st->silk_enc_offset;
celt_enc = (CELTEncoder*)((char*)st+st->celt_enc_offset);
st->stream_channels = st->channels = channels;
st->Fs = Fs;
st->arch = opus_select_arch();
ret = silk_InitEncoder( silk_enc, st->arch, &st->silk_mode );
if(ret)return OPUS_INTERNAL_ERROR;
st->silk_mode.nChannelsAPI = channels;
st->silk_mode.nChannelsInternal = channels;
st->silk_mode.API_sampleRate = st->Fs;
st->silk_mode.maxInternalSampleRate = 16000;
st->silk_mode.minInternalSampleRate = 8000;
st->silk_mode.desiredInternalSampleRate = 16000;
st->silk_mode.payloadSize_ms = 20;
st->silk_mode.bitRate = 25000;
st->silk_mode.packetLossPercentage = 0;
st->silk_mode.complexity = 9;
st->silk_mode.useInBandFEC = 0;
st->silk_mode.useDTX = 0;
st->silk_mode.useCBR = 0;
st->silk_mode.reducedDependency = 0;
/* Create CELT encoder */
err = celt_encoder_init(celt_enc, Fs, channels, st->arch);
if(err!=OPUS_OK)return OPUS_INTERNAL_ERROR;
celt_encoder_ctl(celt_enc, CELT_SET_SIGNALLING(0));
celt_encoder_ctl(celt_enc, OPUS_SET_COMPLEXITY(st->silk_mode.complexity));
/* Makes constrained VBR the default (safer for real-time use) */
st->vbr_constraint = 1;
st->user_bitrate_bps = OPUS_AUTO;
st->bitrate_bps = 3000+Fs*channels;
st->application = application;
st->signal_type = OPUS_AUTO;
st->user_bandwidth = OPUS_AUTO;
st->max_bandwidth = OPUS_BANDWIDTH_FULLBAND;
st->force_channels = OPUS_AUTO;
st->user_forced_mode = OPUS_AUTO;
st->voice_ratio = -1;
st->encoder_buffer = st->Fs/100;
st->variable_duration = OPUS_FRAMESIZE_ARG;
/* Delay compensation of 4 ms (2.5 ms for SILK's extra look-ahead
+ 1.5 ms for SILK resamplers and stereo prediction) */
st->delay_compensation = st->Fs/250;

Jean-Marc Valin
committed
st->hybrid_stereo_width_Q14 = 1 << 14;
st->prev_HB_gain = Q15ONE;
st->variable_HP_smth2_Q15 = silk_LSHIFT( silk_lin2log( VARIABLE_HP_MIN_CUTOFF_HZ ), 8 );
st->first = 1;
st->mode = MODE_HYBRID;
st->bandwidth = OPUS_BANDWIDTH_FULLBAND;
static unsigned char gen_toc(int mode, int framerate, int bandwidth, int channels)
{
int period;
unsigned char toc;
period = 0;
while (framerate < 400)
{
framerate <<= 1;
period++;
}
if (mode == MODE_SILK_ONLY)
{
toc = (bandwidth-OPUS_BANDWIDTH_NARROWBAND)<<5;
toc |= (period-2)<<3;
} else if (mode == MODE_CELT_ONLY)
{
int tmp = bandwidth-OPUS_BANDWIDTH_MEDIUMBAND;
if (tmp < 0)
tmp = 0;
toc = 0x80;
toc |= tmp << 5;
toc |= period<<3;
} else /* Hybrid */
{
toc = 0x60;
toc |= (bandwidth-OPUS_BANDWIDTH_SUPERWIDEBAND)<<4;
toc |= (period-2)<<3;
}
toc |= (channels==2)<<2;
return toc;
}

Diego Elio Pettenò
committed
static void silk_biquad_float(
const opus_val16 *in, /* I: Input signal */
const opus_int32 *B_Q28, /* I: MA coefficients [3] */
const opus_int32 *A_Q28, /* I: AR coefficients [2] */
opus_val32 *S, /* I/O: State vector [2] */
opus_val16 *out, /* O: Output signal */
const opus_int32 len, /* I: Signal length (must be even) */
int stride
)
{
/* DIRECT FORM II TRANSPOSED (uses 2 element state vector) */
opus_int k;
opus_val32 vout;
opus_val32 inval;
opus_val32 A[2], B[3];
A[0] = (opus_val32)(A_Q28[0] * (1.f/((opus_int32)1<<28)));
A[1] = (opus_val32)(A_Q28[1] * (1.f/((opus_int32)1<<28)));
B[0] = (opus_val32)(B_Q28[0] * (1.f/((opus_int32)1<<28)));
B[1] = (opus_val32)(B_Q28[1] * (1.f/((opus_int32)1<<28)));
B[2] = (opus_val32)(B_Q28[2] * (1.f/((opus_int32)1<<28)));
/* Negate A_Q28 values and split in two parts */
for( k = 0; k < len; k++ ) {
/* S[ 0 ], S[ 1 ]: Q12 */
inval = in[ k*stride ];
vout = S[ 0 ] + B[0]*inval;
S[ 0 ] = S[1] - vout*A[0] + B[1]*inval;
S[ 1 ] = - vout*A[1] + B[2]*inval + VERY_SMALL;
/* Scale back to Q0 and saturate */
out[ k*stride ] = vout;
}
}
#endif
static void hp_cutoff(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *out, opus_val32 *hp_mem, int len, int channels, opus_int32 Fs)
{
opus_int32 B_Q28[ 3 ], A_Q28[ 2 ];
opus_int32 Fc_Q19, r_Q28, r_Q22;
silk_assert( cutoff_Hz <= silk_int32_MAX / SILK_FIX_CONST( 1.5 * 3.14159 / 1000, 19 ) );
Fc_Q19 = silk_DIV32_16( silk_SMULBB( SILK_FIX_CONST( 1.5 * 3.14159 / 1000, 19 ), cutoff_Hz ), Fs/1000 );
silk_assert( Fc_Q19 > 0 && Fc_Q19 < 32768 );
r_Q28 = SILK_FIX_CONST( 1.0, 28 ) - silk_MUL( SILK_FIX_CONST( 0.92, 9 ), Fc_Q19 );
/* b = r * [ 1; -2; 1 ]; */
/* a = [ 1; -2 * r * ( 1 - 0.5 * Fc^2 ); r^2 ]; */
B_Q28[ 0 ] = r_Q28;
B_Q28[ 1 ] = silk_LSHIFT( -r_Q28, 1 );
B_Q28[ 2 ] = r_Q28;
/* -r * ( 2 - Fc * Fc ); */
r_Q22 = silk_RSHIFT( r_Q28, 6 );
A_Q28[ 0 ] = silk_SMULWW( r_Q22, silk_SMULWW( Fc_Q19, Fc_Q19 ) - SILK_FIX_CONST( 2.0, 22 ) );
A_Q28[ 1 ] = silk_SMULWW( r_Q22, r_Q22 );
#ifdef FIXED_POINT
silk_biquad_alt( in, B_Q28, A_Q28, hp_mem, out, len, channels );
if( channels == 2 ) {
silk_biquad_alt( in+1, B_Q28, A_Q28, hp_mem+2, out+1, len, channels );
}
#else
silk_biquad_float( in, B_Q28, A_Q28, hp_mem, out, len, channels );
if( channels == 2 ) {
silk_biquad_float( in+1, B_Q28, A_Q28, hp_mem+2, out+1, len, channels );
}
#endif
}
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#ifdef FIXED_POINT
static void dc_reject(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *out, opus_val32 *hp_mem, int len, int channels, opus_int32 Fs)
{
int c, i;
int shift;
/* Approximates -round(log2(4.*cutoff_Hz/Fs)) */
shift=celt_ilog2(Fs/(cutoff_Hz*3));
for (c=0;c<channels;c++)
{
for (i=0;i<len;i++)
{
opus_val32 x, tmp, y;
x = SHL32(EXTEND32(in[channels*i+c]), 15);
/* First stage */
tmp = x-hp_mem[2*c];
hp_mem[2*c] = hp_mem[2*c] + PSHR32(x - hp_mem[2*c], shift);
/* Second stage */
y = tmp - hp_mem[2*c+1];
hp_mem[2*c+1] = hp_mem[2*c+1] + PSHR32(tmp - hp_mem[2*c+1], shift);
out[channels*i+c] = EXTRACT16(SATURATE(PSHR32(y, 15), 32767));
}
}
}
#else
static void dc_reject(const opus_val16 *in, opus_int32 cutoff_Hz, opus_val16 *out, opus_val32 *hp_mem, int len, int channels, opus_int32 Fs)
{
int c, i;
float coef;
for (c=0;c<channels;c++)
{
for (i=0;i<len;i++)
{
opus_val32 x, tmp, y;
x = in[channels*i+c];
/* First stage */
tmp = x-hp_mem[2*c];
hp_mem[2*c] = hp_mem[2*c] + coef*(x - hp_mem[2*c]) + VERY_SMALL;
/* Second stage */
y = tmp - hp_mem[2*c+1];
hp_mem[2*c+1] = hp_mem[2*c+1] + coef*(tmp - hp_mem[2*c+1]) + VERY_SMALL;
out[channels*i+c] = y;
}
}
}
#endif
static void stereo_fade(const opus_val16 *in, opus_val16 *out, opus_val16 g1, opus_val16 g2,
int overlap48, int frame_size, int channels, const opus_val16 *window, opus_int32 Fs)
int overlap;
int inc;
inc = 48000/Fs;
overlap=overlap48/inc;
g1 = Q15ONE-g1;
g2 = Q15ONE-g2;
for (i=0;i<overlap;i++)
{
opus_val32 diff;
opus_val16 g, w;
w = MULT16_16_Q15(window[i*inc], window[i*inc]);
g = SHR32(MAC16_16(MULT16_16(w,g2),
Q15ONE-w, g1), 15);
diff = EXTRACT16(HALF32((opus_val32)in[i*channels] - (opus_val32)in[i*channels+1]));
diff = MULT16_16_Q15(g, diff);
out[i*channels] = out[i*channels] - diff;
out[i*channels+1] = out[i*channels+1] + diff;
}
for (;i<frame_size;i++)
{
opus_val32 diff;
diff = EXTRACT16(HALF32((opus_val32)in[i*channels] - (opus_val32)in[i*channels+1]));
diff = MULT16_16_Q15(g2, diff);
out[i*channels] = out[i*channels] - diff;
out[i*channels+1] = out[i*channels+1] + diff;
}
}
static void gain_fade(const opus_val16 *in, opus_val16 *out, opus_val16 g1, opus_val16 g2,
int overlap48, int frame_size, int channels, const opus_val16 *window, opus_int32 Fs)
{
int i;
int inc;
int overlap;
inc = 48000/Fs;
overlap=overlap48/inc;
if (channels==1)
for (i=0;i<overlap;i++)
{
opus_val16 g, w;
w = MULT16_16_Q15(window[i*inc], window[i*inc]);
g = SHR32(MAC16_16(MULT16_16(w,g2),
Q15ONE-w, g1), 15);
out[i] = MULT16_16_Q15(g, in[i]);
}
} else {
for (i=0;i<overlap;i++)
{
opus_val16 g, w;
w = MULT16_16_Q15(window[i*inc], window[i*inc]);
g = SHR32(MAC16_16(MULT16_16(w,g2),
Q15ONE-w, g1), 15);
out[i*2] = MULT16_16_Q15(g, in[i*2]);
out[i*2+1] = MULT16_16_Q15(g, in[i*2+1]);
}
c=0;do {
{
out[i*channels+c] = MULT16_16_Q15(g2, in[i*channels+c]);
}
while (++c<channels);

Gregory Maxwell
committed
OpusEncoder *opus_encoder_create(opus_int32 Fs, int channels, int application, int *error)
OpusEncoder *st;

Gregory Maxwell
committed
if((Fs!=48000&&Fs!=24000&&Fs!=16000&&Fs!=12000&&Fs!=8000)||(channels!=1&&channels!=2)||
(application != OPUS_APPLICATION_VOIP && application != OPUS_APPLICATION_AUDIO
&& application != OPUS_APPLICATION_RESTRICTED_LOWDELAY))
{
if (error)
*error = OPUS_BAD_ARG;
return NULL;
}
st = (OpusEncoder *)opus_alloc(opus_encoder_get_size(channels));
if (st == NULL)
{
if (error)
*error = OPUS_ALLOC_FAIL;
return NULL;
}

Gregory Maxwell
committed
ret = opus_encoder_init(st, Fs, channels, application);
if (error)
*error = ret;
if (ret != OPUS_OK)
{
opus_free(st);
st = NULL;
return st;

Gregory Maxwell
committed
static opus_int32 user_bitrate_to_bitrate(OpusEncoder *st, int frame_size, int max_data_bytes)
{
if(!frame_size)frame_size=st->Fs/400;
if (st->user_bitrate_bps==OPUS_AUTO)
return 60*st->Fs/frame_size + st->Fs*st->channels;
else if (st->user_bitrate_bps==OPUS_BITRATE_MAX)
return max_data_bytes*8*st->Fs/frame_size;
else
return st->user_bitrate_bps;
}
#ifndef DISABLE_FLOAT_API

Jean-Marc Valin
committed
/* Don't use more than 60 ms for the frame size analysis */
#define MAX_DYNAMIC_FRAMESIZE 24
/* Estimates how much the bitrate will be boosted based on the sub-frame energy */
static float transient_boost(const float *E, const float *E_1, int LM, int maxM)
{
int i;
int M;
float sumE=0, sumE_1=0;
float metric;
M = IMIN(maxM, (1<<LM)+1);
for (i=0;i<M;i++)
{
sumE += E[i];
sumE_1 += E_1[i];
}
metric = sumE*sumE_1/(M*M);
/*if (LM==3)
printf("%f\n", metric);*/
/*return metric>10 ? 1 : 0;*/
/*return MAX16(0,1-exp(-.25*(metric-2.)));*/
return MIN16(1,(float)sqrt(MAX16(0,.05f*(metric-2))));

Jean-Marc Valin
committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
}
/* Viterbi decoding trying to find the best frame size combination using look-ahead
State numbering:
0: unused
1: 2.5 ms
2: 5 ms (#1)
3: 5 ms (#2)
4: 10 ms (#1)
5: 10 ms (#2)
6: 10 ms (#3)
7: 10 ms (#4)
8: 20 ms (#1)
9: 20 ms (#2)
10: 20 ms (#3)
11: 20 ms (#4)
12: 20 ms (#5)
13: 20 ms (#6)
14: 20 ms (#7)
15: 20 ms (#8)
*/
static int transient_viterbi(const float *E, const float *E_1, int N, int frame_cost, int rate)
{
int i;
float cost[MAX_DYNAMIC_FRAMESIZE][16];
int states[MAX_DYNAMIC_FRAMESIZE][16];
float best_cost;
int best_state;
float factor;
/* Take into account that we damp VBR in the 32 kb/s to 64 kb/s range. */
if (rate<80)
factor=0;
else if (rate>160)
factor=1;
else
factor = (rate-80.f)/80.f;
/* Makes variable framesize less aggressive at lower bitrates, but I can't
find any valid theoretical justification for this (other than it seems

Jean-Marc Valin
committed
for (i=0;i<16;i++)
{
/* Impossible state */
states[0][i] = -1;
cost[0][i] = 1e10;
}
for (i=0;i<4;i++)
{
cost[0][1<<i] = (frame_cost + rate*(1<<i))*(1+factor*transient_boost(E, E_1, i, N+1));

Jean-Marc Valin
committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
states[0][1<<i] = i;
}
for (i=1;i<N;i++)
{
int j;
/* Follow continuations */
for (j=2;j<16;j++)
{
cost[i][j] = cost[i-1][j-1];
states[i][j] = j-1;
}
/* New frames */
for(j=0;j<4;j++)
{
int k;
float min_cost;
float curr_cost;
states[i][1<<j] = 1;
min_cost = cost[i-1][1];
for(k=1;k<4;k++)
{
float tmp = cost[i-1][(1<<(k+1))-1];
if (tmp < min_cost)
{
states[i][1<<j] = (1<<(k+1))-1;
min_cost = tmp;
}
}
curr_cost = (frame_cost + rate*(1<<j))*(1+factor*transient_boost(E+i, E_1+i, j, N-i+1));

Jean-Marc Valin
committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
cost[i][1<<j] = min_cost;
/* If part of the frame is outside the analysis window, only count part of the cost */
if (N-i < (1<<j))
cost[i][1<<j] += curr_cost*(float)(N-i)/(1<<j);
else
cost[i][1<<j] += curr_cost;
}
}
best_state=1;
best_cost = cost[N-1][1];
/* Find best end state (doesn't force a frame to end at N-1) */
for (i=2;i<16;i++)
{
if (cost[N-1][i]<best_cost)
{
best_cost = cost[N-1][i];
best_state = i;
}
}
/* Follow transitions back */
for (i=N-1;i>=0;i--)
{
/*printf("%d ", best_state);*/
best_state = states[i][best_state];
}
/*printf("%d\n", best_state);*/
return best_state;
}
static int optimize_framesize(const void *x, int len, int C, opus_int32 Fs,
int bitrate, opus_val16 tonality, float *mem, int buffering,
downmix_func downmix)

Jean-Marc Valin
committed
{
int N;
int i;

Jean-Marc Valin
committed
float e[MAX_DYNAMIC_FRAMESIZE+4];
float e_1[MAX_DYNAMIC_FRAMESIZE+3];
opus_val32 memx;

Jean-Marc Valin
committed
int bestLM=0;
int subframe;
int pos;
VARDECL(opus_val32, sub);

Jean-Marc Valin
committed
subframe = Fs/400;
ALLOC(sub, subframe, opus_val32);

Jean-Marc Valin
committed
e[0]=mem[0];

Jean-Marc Valin
committed
if (buffering)
{
/* Consider the CELT delay when not in restricted-lowdelay */
/* We assume the buffering is between 2.5 and 5 ms */
offset = 2*subframe - buffering;

Jean-Marc Valin
committed
celt_assert(offset>=0 && offset <= subframe);
len -= offset;
e[1]=mem[1];

Jean-Marc Valin
committed
e[2]=mem[2];

Jean-Marc Valin
committed
pos = 3;
} else {
pos=1;

Jean-Marc Valin
committed
}
N=IMIN(len/subframe, MAX_DYNAMIC_FRAMESIZE);
/* Just silencing a warning, it's really initialized later */
memx = 0;

Jean-Marc Valin
committed
for (i=0;i<N;i++)
{
float tmp;
opus_val32 tmpx;

Jean-Marc Valin
committed
int j;
tmp=EPSILON;
downmix(x, sub, subframe, i*subframe+offset, 0, -2, C);
if (i==0)
memx = sub[0];
for (j=0;j<subframe;j++)
{
tmpx = sub[j];
tmp += (tmpx-memx)*(float)(tmpx-memx);

Jean-Marc Valin
committed
}
e[i+pos] = tmp;
e_1[i+pos] = 1.f/tmp;
}
/* Hack to get 20 ms working with APPLICATION_AUDIO
The real problem is that the corresponding memory needs to use 1.5 ms
from this frame and 1 ms from the next frame */
e[i+pos] = e[i+pos-1];
if (buffering)
N=IMIN(MAX_DYNAMIC_FRAMESIZE, N+2);
bestLM = transient_viterbi(e, e_1, N, (int)((1.f+.5f*tonality)*(60*C+40)), bitrate/400);

Jean-Marc Valin
committed
mem[0] = e[1<<bestLM];
if (buffering)
{
mem[1] = e[(1<<bestLM)+1];
mem[2] = e[(1<<bestLM)+2];
}
return bestLM;
}

Jean-Marc Valin
committed
#endif

Jean-Marc Valin
committed
#ifndef DISABLE_FLOAT_API
#ifdef FIXED_POINT
#define PCM2VAL(x) FLOAT2INT16(x)
#else
#define PCM2VAL(x) SCALEIN(x)
#endif
void downmix_float(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C)

Jean-Marc Valin
committed
{
const float *x;

Jean-Marc Valin
committed
int j;
x = (const float *)_x;
for (j=0;j<subframe;j++)
sub[j] = PCM2VAL(x[(j+offset)*C+c1]);

Jean-Marc Valin
committed
if (c2>-1)
{
for (j=0;j<subframe;j++)
sub[j] += PCM2VAL(x[(j+offset)*C+c2]);

Jean-Marc Valin
committed
} else if (c2==-2)
{
int c;
for (c=1;c<C;c++)
{
for (j=0;j<subframe;j++)
sub[j] += PCM2VAL(x[(j+offset)*C+c]);

Jean-Marc Valin
committed
}
}
#ifdef FIXED_POINT
scale = (1<<SIG_SHIFT);
#else
scale = 1.f;
if (C==-2)
scale /= C;
else
scale /= 2;
for (j=0;j<subframe;j++)
sub[j] *= scale;

Jean-Marc Valin
committed
}
#endif
void downmix_int(const void *_x, opus_val32 *sub, int subframe, int offset, int c1, int c2, int C)

Jean-Marc Valin
committed
{
const opus_int16 *x;

Jean-Marc Valin
committed
int j;
x = (const opus_int16 *)_x;
for (j=0;j<subframe;j++)
sub[j] = x[(j+offset)*C+c1];
if (c2>-1)
{
for (j=0;j<subframe;j++)
sub[j] += x[(j+offset)*C+c2];
} else if (c2==-2)
{
int c;
for (c=1;c<C;c++)
{
for (j=0;j<subframe;j++)
sub[j] += x[(j+offset)*C+c];
}
}
#ifdef FIXED_POINT
if (C==-2)
scale /= C;
else
scale /= 2;
for (j=0;j<subframe;j++)
sub[j] *= scale;

Jean-Marc Valin
committed
}
opus_int32 frame_size_select(opus_int32 frame_size, int variable_duration, opus_int32 Fs)
{
int new_size;
if (frame_size<Fs/400)
return -1;
if (variable_duration == OPUS_FRAMESIZE_ARG)
new_size = frame_size;
else if (variable_duration == OPUS_FRAMESIZE_VARIABLE)
new_size = Fs/50;
else if (variable_duration >= OPUS_FRAMESIZE_2_5_MS && variable_duration <= OPUS_FRAMESIZE_60_MS)
new_size = IMIN(3*Fs/50, (Fs/400)<<(variable_duration-OPUS_FRAMESIZE_2_5_MS));
else
return -1;
if (new_size>frame_size)
return -1;
if (400*new_size!=Fs && 200*new_size!=Fs && 100*new_size!=Fs &&
50*new_size!=Fs && 25*new_size!=Fs && 50*new_size!=3*Fs)
return -1;
return new_size;
}
opus_int32 compute_frame_size(const void *analysis_pcm, int frame_size,
int variable_duration, int C, opus_int32 Fs, int bitrate_bps,
int delay_compensation, downmix_func downmix
#ifndef DISABLE_FLOAT_API
, float *subframe_mem
#ifndef DISABLE_FLOAT_API
if (variable_duration == OPUS_FRAMESIZE_VARIABLE && frame_size >= Fs/200)
{
int LM = 3;
LM = optimize_framesize(analysis_pcm, frame_size, C, Fs, bitrate_bps,
0, subframe_mem, delay_compensation, downmix);
while ((Fs/400<<LM)>frame_size)
LM--;
frame_size = (Fs/400<<LM);
} else
#else
(void)analysis_pcm;
(void)C;
(void)bitrate_bps;
(void)delay_compensation;
(void)downmix;
#endif
{
frame_size = frame_size_select(frame_size, variable_duration, Fs);
}
if (frame_size<0)
return -1;
return frame_size;
}
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
opus_val16 compute_stereo_width(const opus_val16 *pcm, int frame_size, opus_int32 Fs, StereoWidthState *mem)
{
opus_val16 corr;
opus_val16 ldiff;
opus_val16 width;
opus_val32 xx, xy, yy;
opus_val16 sqrt_xx, sqrt_yy;
opus_val16 qrrt_xx, qrrt_yy;
int frame_rate;
int i;
opus_val16 short_alpha;
frame_rate = Fs/frame_size;
short_alpha = Q15ONE - 25*Q15ONE/IMAX(50,frame_rate);
xx=xy=yy=0;
for (i=0;i<frame_size;i+=4)
{
opus_val32 pxx=0;
opus_val32 pxy=0;
opus_val32 pyy=0;
opus_val16 x, y;
x = pcm[2*i];
y = pcm[2*i+1];
pxx = SHR32(MULT16_16(x,x),2);
pxy = SHR32(MULT16_16(x,y),2);
pyy = SHR32(MULT16_16(y,y),2);
x = pcm[2*i+2];
y = pcm[2*i+3];
pxx += SHR32(MULT16_16(x,x),2);
pxy += SHR32(MULT16_16(x,y),2);
pyy += SHR32(MULT16_16(y,y),2);
x = pcm[2*i+4];
y = pcm[2*i+5];
pxx += SHR32(MULT16_16(x,x),2);
pxy += SHR32(MULT16_16(x,y),2);
pyy += SHR32(MULT16_16(y,y),2);
x = pcm[2*i+6];
y = pcm[2*i+7];
pxx += SHR32(MULT16_16(x,x),2);
pxy += SHR32(MULT16_16(x,y),2);
pyy += SHR32(MULT16_16(y,y),2);
xx += SHR32(pxx, 10);
xy += SHR32(pxy, 10);
yy += SHR32(pyy, 10);
}
mem->XX += MULT16_32_Q15(short_alpha, xx-mem->XX);
mem->XY += MULT16_32_Q15(short_alpha, xy-mem->XY);
mem->YY += MULT16_32_Q15(short_alpha, yy-mem->YY);
mem->XX = MAX32(0, mem->XX);
mem->XY = MAX32(0, mem->XY);
mem->YY = MAX32(0, mem->YY);
if (MAX32(mem->XX, mem->YY)>QCONST16(8e-4f, 18))
{
sqrt_xx = celt_sqrt(mem->XX);
sqrt_yy = celt_sqrt(mem->YY);
qrrt_xx = celt_sqrt(sqrt_xx);
qrrt_yy = celt_sqrt(sqrt_yy);
/* Inter-channel correlation */
mem->XY = MIN32(mem->XY, sqrt_xx*sqrt_yy);
corr = SHR32(frac_div32(mem->XY,EPSILON+MULT16_16(sqrt_xx,sqrt_yy)),16);
/* Approximate loudness difference */
ldiff = Q15ONE*ABS16(qrrt_xx-qrrt_yy)/(EPSILON+qrrt_xx+qrrt_yy);
width = MULT16_16_Q15(celt_sqrt(QCONST32(1.f,30)-MULT16_16(corr,corr)), ldiff);
/* Smoothing over one second */
mem->smoothed_width += (width-mem->smoothed_width)/frame_rate;
/* Peak follower */
mem->max_follower = MAX16(mem->max_follower-QCONST16(.02f,15)/frame_rate, mem->smoothed_width);
} else {
width = 0;
corr=Q15ONE;
ldiff=0;
}
/*printf("%f %f %f %f %f ", corr/(float)Q15ONE, ldiff/(float)Q15ONE, width/(float)Q15ONE, mem->smoothed_width/(float)Q15ONE, mem->max_follower/(float)Q15ONE);*/
return EXTRACT16(MIN32(Q15ONE,20*mem->max_follower));
}
opus_int32 opus_encode_native(OpusEncoder *st, const opus_val16 *pcm, int frame_size,

Jean-Marc Valin
committed
unsigned char *data, opus_int32 out_data_bytes, int lsb_depth,

Jean-Marc Valin
committed
const void *analysis_pcm, opus_int32 analysis_size, int c1, int c2,
int analysis_channels, downmix_func downmix, int float_api)
void *silk_enc;
CELTEncoder *celt_enc;

Jean-Marc Valin
committed
int redundancy = 0;
int redundancy_bytes = 0; /* Number of bytes to use for redundancy frame */
int nb_compr_bytes;
int to_celt = 0;
opus_uint32 redundant_rng = 0;
int cutoff_Hz, hp_freq_smth1;
int voice_est; /* Probability of voice in Q7 */
opus_int32 equiv_rate;
int delay_compensation;
int frame_rate;
opus_int32 max_rate; /* Max bitrate we're allowed to use */
int curr_bandwidth;
opus_val16 HB_gain;
opus_int32 max_data_bytes; /* Max number of bytes we're allowed to use */

Jean-Marc Valin
committed
const CELTMode *celt_mode;

Jean-Marc Valin
committed
AnalysisInfo analysis_info;
int analysis_read_pos_bak=-1;
int analysis_read_subframe_bak=-1;
max_data_bytes = IMIN(1276, out_data_bytes);
st->rangeFinal = 0;

Jean-Marc Valin
committed
if ((!st->variable_duration && 400*frame_size != st->Fs && 200*frame_size != st->Fs && 100*frame_size != st->Fs &&
50*frame_size != st->Fs && 25*frame_size != st->Fs && 50*frame_size != 3*st->Fs)

Jean-Marc Valin
committed
|| (400*frame_size < st->Fs)
|| max_data_bytes<=0
)
{
RESTORE_STACK;
return OPUS_BAD_ARG;
}
silk_enc = (char*)st+st->silk_enc_offset;
celt_enc = (CELTEncoder*)((char*)st+st->celt_enc_offset);
if (st->application == OPUS_APPLICATION_RESTRICTED_LOWDELAY)
delay_compensation = 0;
else
delay_compensation = st->delay_compensation;
lsb_depth = IMIN(lsb_depth, st->lsb_depth);

Jean-Marc Valin
committed
celt_encoder_ctl(celt_enc, CELT_GET_MODE(&celt_mode));
#ifndef DISABLE_FLOAT_API
#ifdef FIXED_POINT
if (st->silk_mode.complexity >= 10 && st->Fs==48000)